Learn More
We obtained nuclear magnetic resonance (NMR) spectra of liquids in fields of a few microtesla, using prepolarization in fields of a few millitesla and detection with a dc superconducting quantum interference device (SQUID). Because the sensitivity of the SQUID is frequency independent, we enhanced both signal-to-noise ratio and spectral resolution by(More)
MRI scanners enable fast, noninvasive, and high-resolution imaging of organs and soft tissue. The images are reconstructed from NMR signals generated by nuclear spins that precess in a static magnetic field B0 in the presence of magnetic field gradients. Most clinical MRI scanners operate at a magnetic field B0 = 1.5 T, corresponding to a proton resonance(More)
Context. Observations of the Sunyaev-Zel'dovich effect (SZE) from galaxy clusters are emerging as a powerful tool in cosmology. Besides large cluster surveys, resolved SZE images of individual clusters can shed light on the physics of the intra-cluster medium (ICM) and allow accurate measurements of the cluster gas and total masses. Aims. We used the(More)
BACKGROUND The genetic differences among HIV-1 subtypes may be critical to clinical management and drug resistance surveillance as antiretroviral treatment is expanded to regions of the world where diverse non-subtype-B viruses predominate. METHODS AND FINDINGS To assess the impact of HIV-1 subtype and antiretroviral treatment on the distribution of(More)
Superconducting circuits are macroscopic in size but have generic quantum properties such as quantized energy levels, superposition of states, and entanglement, all of which are more commonly associated with atoms. Superconducting quantum bits (qubits) form the key component of these circuits. Their quantum state is manipulated by using electromagnetic(More)
We demonstrate a technique for detecting magnetically labeled Listeria monocytogenes and for measuring the binding rate between antibody-linked magnetic particles and bacteria. This sensitive assay quantifies specific bacteria in a sample without the need to immobilize them or wash away unbound magnetic particles. In the measurement, we add 50-nm-diameter(More)
T(1)-weighted contrast MRI with prepolarization was detected with a superconducting quantum interference device (SQUID). A spin evolution period in a variable field between prepolarization and detection enabled the measurement of T(1) in fields between 1.7 microT and 300 mT; T(1) dispersion curves of agarose gel samples over five decades in frequency were(More)
The proton T(1) was measured at 132 μT in ex vivo prostate tissue specimens from radical prostatectomies of 35 patients with prostate cancer. Each patient provided two specimens. The NMR and MRI measurements involved proton repolarization, a field of typically 150 mT and detection of the 5.6-kHz signal with a superconducting quantum interference device.(More)
We propose a model for 1/f flux noise in superconducting devices (f is frequency). The noise is generated by the magnetic moments of electrons in defect states which they occupy for a wide distribution of times before escaping. A trapped electron occupies one of the two Kramers-degenerate ground states, between which the transition rate is negligible at low(More)