John Cecil Meadows

Learn More
The spindle assembly checkpoint (SAC) is the major surveillance system that ensures that sister chromatids do not separate until all chromosomes are correctly bioriented during mitosis. Components of the checkpoint include Mad1, Mad2, Mad3 (BubR1), Bub3, and the kinases Bub1, Mph1 (Mps1), and Aurora B. Checkpoint proteins are recruited to kinetochores when(More)
The spindle checkpoint is the prime cell-cycle control mechanism that ensures sister chromatids are bioriented before anaphase takes place. Aurora B kinase, the catalytic subunit of the chromosome passenger complex, both destabilizes kinetochore attachments that do not generate tension and simultaneously maintains the spindle checkpoint signal. However, it(More)
We identified a truncated allele of dam1 as a multicopy suppressor of the sensitivity of cdc13-117 (cyclin B) and mal3-1 (EB-1) cells to thiabendazole, a microtubule poison. We find that Dam1 binds to the plus end of spindle microtubules and kinetochores as cells enter mitosis and this is dependent on other components of the fission yeast DASH complex,(More)
In fission yeast centromeres cluster at the nuclear envelope in a region underlying the spindle pole body during interphase, an arrangement known as a Rabl configuration. We have identified a strain in which one pair of sister kinetochores is unclustered from the others and binds the nuclear envelope at a point distal to the spindle pole body. We show that(More)
Double-crested cormorant (Phalacrocorax auritus) eggs were injected with either 3,39,4,49,5-pentachlorobiphenyl (PCB 126), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), or an extract derived from field-collected double-crested cormorant eggs. These compounds were injected into the yolks of cormorant eggs from an isolated colony on Lake Winnipegosis, Manitoba,(More)
Although critical for spindle checkpoint signaling, the role kinetochores play in anaphase promoting complex (APC) inhibition remains unclear. Here we show that spindle checkpoint proteins are severely depleted from unattached kinetochores in fission yeast cells lacking Bub3p. Surprisingly, a robust mitotic arrest is maintained in the majority of bub3 Delta(More)
The spindle assembly checkpoint (SAC) ensures that sister chromatids do not separate until all chromosomes are attached to spindle microtubules and bi-oriented. Spindle checkpoint proteins, including Mad1, Mad2, Mad3 (BubR1), Bub1, Bub3, and Mph1 (Mps1), are recruited to unattached and/or tensionless kinetochores. SAC activation catalyzes the conversion of(More)
The fungal-specific heterodecameric outer kinetochore DASH complex facilitates the interaction of kinetochores with spindle microtubules. In budding yeast, where kinetochores bind a single microtubule, the DASH complex is essential, and phosphorylation of Dam1 by the Aurora kinase homologue, Ipl1, causes detachment of kinetochores from spindle microtubules.(More)
The segregation of sister chromatids during mitosis is one of the most easily visualized, yet most remarkable, events during the life cycle of a cell. The accuracy of this process is essential to maintain ploidy during cell duplication. Over the past 20 years, substantial progress has been made in identifying components of both the kinetochore and the(More)
It has been proposed previously that latrunculin A, an inhibitor of actin polymerization, delays the onset of anaphase by causing spindle misorientation in fission yeast. However, we show that Delta mto1 cells, which are defective in nucleation of cytoplasmic microtubules, have profoundly misoriented spindles but are not delayed in the timing of sister(More)