Learn More
We use a micro-founded macroeconometric modeling framework to investigate the design of monetary policy when the central bank faces uncertainty about the true structure of the economy. We apply Bayesian methods to estimate the parameters of the baseline specification using postwar U.S. data and then determine the policy under commitment that maximizes(More)
Cytoplasmic dynein is a large multisubunit complex involved in retrograde transport and the positioning of various organelles. Dynein light chain (LC) subunits are conserved across species; however, the molecular contribution of LCs to dynein function remains controversial. One model suggests that LCs act as cargo-binding scaffolds. Alternatively, LCs are(More)
Cytoplasmic dynein has long been thought to be responsible for retrograde axonal transport. As the number of cellular roles for this multifunctional protein has expanded, the complexity of its contribution to axonal transport has increased. In this article the increasing evidence for a role for cytoplasmic dynein in anterograde as well as retrograde(More)
Channelrhodospin-2 (ChR2), a light-sensitive ion channel, and its variants have emerged as new excitatory optogenetic tools not only in neuroscience, but also in other areas, including cardiac electrophysiology. An accurate quantitative model of ChR2 is necessary for in silico prediction of the response to optical stimulation in realistic tissue/organ(More)
Optogenetics has emerged as an alternative method for electrical control of the heart, where illumination is used to elicit a bioelectric response in tissue modified to express photosensitive proteins (opsins). This technology promises to enable evocation of spatiotemporally precise responses in targeted cells or tissues, thus creating new possibilities for(More)
Optogenetics provides an alternative to electrical stimulation to manipulate membrane voltage, and trigger or modify action potentials (APs) in excitable cells. We compare biophysically and energetically the cellular responses to direct electrical current injection versus optical stimulation mediated by genetically expressed light-sensitive ion channels,(More)
The most widely used optogenetic tool, Channelrhodopsin2 (ChR2), is both light- and voltage-sensitive. A light-triggered action potential or light-driven perturbations of ongoing electrical activity provide instant voltage feedback, shaping ChR2 current. Therefore, depending on the cell type and the light pulse duration, the typically reported(More)
Non-visual arrestins play a pivotal role as adaptor proteins in regulating the signaling and trafficking of multiple classes of receptors. Although arrestin interaction with clathrin, AP-2, and phosphoinositides contributes to receptor trafficking, little is known about the configuration and dynamics of these interactions. Here, we identify a novel(More)
Pak1 (p21 activated kinase 1) is a serine/threonine kinase implicated in regulation of cell motility and survival and in malignant transformation of mammary epithelial cells. In addition, the dynein light chain, LC8, has been described to cooperate with Pak1 in malignant transformation of breast cancer cells. Pak1 itself may aid breast cancer development by(More)
  • Volker Wieland, Tobias Cwik, Gernot J Müller, Sebastian Schmidt, Maik Wolters, John B Taylor +25 others
  • 2009
In the aftermath of the global financial crisis, the state of macroeconomic modeling and the use of macroeconomic models in policy analysis has come under heavy criticism. Macroeconomists in academia and policy institutions have been blamed for relying too much on a particular class of macroeconomic models. This paper proposes a comparative approach to(More)