John C. Rothwell

Learn More
It has been 30 years since the discovery that repeated electrical stimulation of neural pathways can lead to long-term potentiation in hippocampal slices. With its relevance to processes such as learning and memory, the technique has produced a vast literature on mechanisms of synaptic plasticity in animal models. To date, the most promising method for(More)
1. In ten normal volunteers, a transcranial magnetic or electric stimulus that was subthreshold for evoking an EMG response in relaxed muscles was used to condition responses evoked by a later, suprathreshold magnetic or electric test shock. In most experiments the test stimulus was given to the lateral part of the motor strip in order to evoke EMG(More)
1. Using two magnetic stimulators, we investigated the effect of a conditioning magnetic stimulus over the motor cortex of one hemisphere on the size of EMG responses evoked in the first dorsal interosseous (FDI) muscle by a magnetic test stimulus given over the opposite hemisphere. 2. A single conditioning shock to one hemisphere produced inhibition of the(More)
1. EMG responses evoked in hand muscles by transcranial stimulation over the motor cortex were conditioned by a single motor threshold electrical stimulus to the median nerve at the wrist in a total of ten healthy subjects and in five patients who had electrodes implanted chronically into the cervical epidural space. 2. The median nerve stimulus suppressed(More)
1. In seven normal subjects, subthreshold transcranial magnetic conditioning stimuli (using a figure-of-eight coil) were applied over the motor cortex in order to evoke activity in intracortical neuronal circuits. The net effect on cortical excitability was evaluated by measuring the effect on the size of EMG responses elicited in the abductor digiti minimi(More)
1. The reaction time to a visual stimulus shortens significantly when an unexpected acoustic startle is delivered together with the 'go' signal in healthy human subjects. In this paper we have investigated the physiological mechanisms underlying this effect. If the commands for the startle and the voluntary reaction were superimposed at some level in the(More)
Intracortical inhibition was investigated in normal human volunteers by paired-pulse transcranial magnetic stimulation, using a new, computer-assisted threshold-tracking method. Motor threshold was defined as the stimulus amplitude required to evoke a motor evoked potential of 0.2 mV (peak-to-peak) in abductor pollicis brevis, and inhibition was measured as(More)
1. The effects of different forms of brain stimulation on the discharge pattern of single motor units were examined using the post-stimulus time histogram (PSTH) technique and by recording the compound surface electromyographic (EMG) responses in the first dorsal interosseous (FDI) muscle. Electrical and magnetic methods were used to stimulate the brain(More)
The brain-derived neurotrophic factor gene (BDNF) is one of many genes thought to influence synaptic plasticity in the adult brain and shows a common single nucleotide polymorphism (BDNF Val66Met) in the normal population that is associated with differences in hippocampal volume and episodic memory. It is also thought to influence possible synaptic changes(More)
Recent experimental work in animals has emphasized the importance of homeostatic plasticity as a means of stabilizing the properties of neuronal circuits. Here, we report a phenomenon that indicates a homeostatic pattern of cortical plasticity in healthy human subjects. The experiments combined two techniques that can produce long-term effects on the(More)