Learn More
The differentiation program of skeletal muscle cells is exquisitely sensitive to secreted proteins. We developed a strategy to maximize the discovery of secreted proteins, using mass spectrometry-based proteomics, from cultured muscle cells, C2C12, grown in a serum-free medium. This strategy led to the identification of 80 nonredundant proteins, of which 27(More)
Myocyte enhancer factor 2 (MEF2) transcriptional regulatory proteins are key regulators of muscle-specific gene expression and also play a general role in the cellular response to growth factors, cytokines and environmental stressors. To identify signaling pathway components that might mediate these events, the potential role of MAP kinase and PKC signaling(More)
The superfamily of transforming growth factor-beta (TGF-beta) cytokines has been shown to have profound effects on cellular proliferation, differentiation, and growth. Recently, there have been major advances in our understanding of the signaling pathway(s) conveying TGF-beta signals to the nucleus to ultimately control gene expression. One tissue that is(More)
Menin plays an established role in the differentiation of mesenchymal cells to the osteogenic lineage. Conversely, whether Menin influences the commitment of mesenschymal cells to the myogenic lineage, despite expression in the developing somite was previously unclear. We observed that Menin is down-regulated in C2C12 and C3H10T1/2 mesenchymal cells when(More)
Lactate accumulation in skeletal muscle is reduced after a period of endurance training. Explanations for this phenomena include the increased oxidative capacity of the muscle, a reduction in lactate production, and increased lactate clearance. Muscle membrane transport of lactate can be seen to be a fundamental aspect of such clearance, and transmembrane(More)
In the "canonical" view of transforming growth factor beta (TGF-beta) signaling, Smad7 plays an inhibitory role. While Smad7 represses Smad3 activation by TGF-beta, it does not reverse the inhibitory effect of TGF-beta on myogenesis, suggesting a different function in myogenic cells. We previously reported a promyogenic role of Smad7 mediated by an(More)
Myogenesis is a well-characterized program of cellular differentiation that is exquisitely sensitive to the extracellular milieu. Systematic characterization of the myogenic secretome (i.e. the ensemble of secreted proteins) is, therefore, warranted for the identification of novel secretome components that regulate both the pluripotency of these progenitor(More)
The role of activating protein-1 (AP-1) in muscle cells is currently equivocal. While some studies propose that AP-1 is inhibitory for myogenesis, others implicate a positive role in this process. We tested whether this variation may be due to different properties of the AP-1 subunit composition in differentiating cells. Using Western analysis we show that(More)
In the mammalian nervous system, regulation of transcription factor activity is a crucial determinant of neuronal cell survival, differentiation, and death. The myocyte enhancer factor 2 (MEF2) transcription factors have been implicated in cellular processes underlying neuronal survival and differentiation. A core component of the MEF2 complex is the MEF2D(More)
Vascular smooth muscle cells (VSMCs) maintain the ability to modulate their phenotype in response to changing environmental stimuli. This phenotype modulation plays a critical role in the development of most vascular disease states. In these studies, stimulation of cultured vascular smooth muscle cells with platelet-derived growth factor resulted in marked(More)