Learn More
The low-temperature dynamics of ultraviscous liquids hold the key to understanding the nature of glass transition and relaxation phenomena, including the potential existence of an ideal thermodynamic glass transition. Unfortunately, existing viscosity models, such as the Vogel-Fulcher-Tammann (VFT) and Avramov-Milchev (AM) equations, exhibit systematic(More)
Borosilicate glasses display a rich complexity of chemical behavior depending on the details of their composition and thermal history. Noted for their high chemical durability and thermal shock resistance, borosilicate glasses have found a variety of important uses from common household and laboratory glassware to high-tech applications such as liquid(More)
We present a topological model for the composition dependence of glass transition temperature and fragility. Whereas previous topological models are derived for zero temperature conditions, our approach incorporates the concept of temperature-dependent constraints that freeze in as the system is cooled from high temperature. Combining this notion of(More)
Understanding the composition dependence of glass hardness is of critical importance for both advanced glass applications and for revealing underlying fracture mechanisms. We present a topological approach for quantitative prediction of hardness in multicomponent glassy systems. We show that hardness is governed by the number of network constraints at room(More)
Glass transition temperature and fragility are two important properties derived from the temperature dependence of the shear viscosity of glass-forming melts. While direct calculation of these properties from atomistic simulations is currently infeasible, we have developed a new topological modeling approach that enables accurate prediction of the scaling(More)
The connection between bulk glass properties and network topology is now well established. However, there has been little attention paid to the impact of network topology on the surface properties of glass. In this work, we report the impact of the network topology on both the transport properties (such as cationic inward diffusion) and the mechanical(More)
In our recent paper [C. Hermansen, J. C. Mauro, and Y.-Z. Yue, J. Chem. Phys. 140, 154501 (2014)], we applied temperature-dependent constraint theory to model the glass transition temperature (Tg) and liquid fragility index (m) of alkali phosphate glasses. Sidebottom commented on this paper concerning the m values obtained by differential scanning(More)
This article presents theoretical analysis and experimental data for the use of resonant waveguide grating (RWG) biosensors to characterize stimulation-mediated cell responses including signaling. The biosensor is capable of detecting redistribution of cellular contents in both directions that are perpendicular and parallel to the sensor surface. This(More)
We describe an atomistic method for computing the viscosity of highly viscous liquids based on activated state kinetics. A basin-filling algorithm allowing the system to climb out of deep energy minima through a series of activation and relaxation is proposed and first benchmarked on the problem of adatom diffusion on a metal surface. It is then used to(More)
The physical origin of stretched exponential relaxation is considered by many as one of the oldest unsolved problems in science. The functional form for stretched exponential relaxation can be deduced from the axiomatic diffusion-trap model of Phillips. The model predicts a topological origin for the dimensionless stretching exponent, with two "magic"(More)