Learn More
In many situations we are faced with the need to estimate the number of classes in a population from observed count data: this arises not only in biology, where we are interested in the number of taxa such as species, but also in many other fields such as public health, criminal justice, software engineering, etc. This problem has a rich history in(More)
This is the second paper in a series of three that investigates eukaryotic microbial diversity and taxon distribution in the Cariaco Basin, Venezuela, the ocean's largest anoxic marine basin. Here, we use phylogenetic information, multivariate community analyses and statistical richness predictions to test whether protists exhibit habitat specialization(More)
To resolve the fine-scale architecture of anoxic protistan communities, we conducted a cultivation-independent 18S rRNA survey in the superanoxic Framvaren Fjord in Norway. We generated three clone libraries along the steep O(2)/H(2)S gradient, using the multiple-primer approach. Of 1,100 clones analyzed, 753 proved to be high-quality protistan target(More)
MOTIVATION The massive data produced by next-generation sequencing require advanced statistical tools. We address estimating the total diversity or species richness in a population. To date, only relatively simple methods have been implemented in available software. There is a need for software employing modern, computationally intensive statistical(More)
The hyper-variable V4 and V9 regions of the small subunit (SSU) rDNA have been targeted for assessing environmental diversity of microbial eukaryotes using next generation sequencing technologies. Here, we explore how the genetic distances among these short fragments compare with the distances obtained from near full-length SSU-rDNA sequences by comparing(More)
BACKGROUND The impact of climate on biodiversity is indisputable. Climate changes over geological time must have significantly influenced the evolution of biodiversity, ultimately leading to its present pattern. Here we consider the paleoclimate data record, inferring that present-day hot and cold environments should contain, respectively, the largest and(More)
BACKGROUND The main tool to discover novel microbial eukaryotes is the rRNA approach. This approach has important biases, including PCR discrimination against certain rRNA gene species, which makes molecular inventories skewed relative to the source communities. The degree of this bias has not been quantified, and it remains unclear whether species missed(More)
BACKGROUND Viruses are important drivers of ecosystem functions, yet little is known about the vast majority of viruses. Viral shotgun metagenomics enables the investigation of broad ecological questions in phage communities. One ecological characteristic is species richness, which is the number of different species in a community. Viruses do not have a(More)
This article reviews recent advances in 'microbiome studies': molecular, statistical and graphical techniques to explore and quantify how microbial organisms affect our environments and ourselves given recent increases in sequencing technology. Microbiome studies are moving beyond mere inventories of specific ecosystems to quantifications of community(More)