John Bolte

Learn More
Helmet-based instrumentation is used to study the biomechanics of concussion. The most extensively used systems estimate rotational acceleration from linear acceleration, but new instrumentation measures rotational velocity using gyroscopes, potentially reducing error. This study compared kinematics from an accelerometer and gyroscope-containing system to(More)
To date, several lateral impact studies (Bolte et al., 2000, 2003, Marth, 2002 and Compigne et al., 2004) have been performed on the shoulder to determine the response characteristics and injury threshold of the shoulder complex. Our understanding of the biomechanical response and injury tolerance of the shoulder would be improved if the results of these(More)
The ability to measure six degrees of freedom (6 DOF) head kinematics in motor vehicle crash conditions is important for assessing head-neck loads as well as brain injuries. A method for obtaining accurate 6 DOF head kinematics in short duration impact conditions is proposed and validated in this study. The proposed methodology utilizes six accelerometers(More)
This study characterizes the PMHS thoracic response to blunt impact in oblique and lateral directions. A significant amount of data has been collected from lateral impacts conducted on human cadavers. Substantially less data has been collected from impacts that are anterior of lateral in an oblique direction. In the past, data collected from the handful of(More)
A new biofidelity assessment system is being developed and applied to three side impact dummies: the WorldSID-alpha, the ES-2 and the SID-HIII. This system quantifies (1) the ability of a dummy to load a vehicle as a cadaver does, "External Biofidelity," and (2) the ability of a dummy to replicate those cadaver responses that best predict injury potential,(More)
OBJECTIVE The objectives of this study are to propose a new instrumentation technique for measuring cervical spine kinematics, validate it, and apply the instrumentation technique to postmortem human subjects (PMHS) in rear impact sled tests so that cervical motions can be investigated. METHODS First, a new instrumentation and dissection technique is(More)
Incomplete instrumentation and a lack of biofidelity in the extremities of the 6 year-old anthropomorphic test device (ATD) pose challenges when studying regions of the body known to interact with the vehicle interior. This study sought to compare a prototype Hybrid III 6 year-old ATD leg (ATD-LE), with a more biofidelic ankle and tibia load cell, to(More)
The purpose of this study was to compare the response of the total human model for safety (THUMS) human body finite element model (FEM) to experimental postmortem human subject (PMHS) test results and evaluate possible injuries caused by suit ring elements. Experimental testing evaluated the PMHS response in frontal, rear, side, falling, and spinal impacts.(More)
Agent-based modeling provides a means for addressing the way human and natural systems interact to change landscapes over time. Until recently, evaluation of simulation models has focused on map comparison techniques that evaluate the degree to which predictions match real-world observations. However, methods that change the focus of evaluation from(More)
Traumatic injury is a major cause of death in the child population. Motor vehicle crashes account for a large portion of these deaths, and a considerable effort is put forth by the safety community to identify injury mechanisms and methods of injury prevention. However, construction of biofidelic anthropomorphic test devices and computational models for(More)