John B. Helder

  • Citations Per Year
Learn More
Intracranial electroencephalographic (iEEG) signals from two human subjects were used to achieve simultaneous neural control of reaching and grasping movements with the Johns Hopkins University Applied Physics Lab (JHU/APL) Modular Prosthetic Limb (MPL), a dexterous robotic prosthetic arm. We performed functional mapping of high gamma activity while the(More)
Retinal prosthetic devices can significantly and positively impact the ability of visually challenged individuals to live a more independent life. We describe a visual processing system which leverages image analysis techniques to produce visual patterns and allows the user to more effectively perceive their environment. These patterns are used to stimulate(More)
Our research group recently demonstrated that a person with tetraplegia could use a brain-computer interface (BCI) to control a sophisticated anthropomorphic robotic arm with skill and speed approaching that of an able-bodied person. This multiyear study exemplifies important principles in translating research from foundational theory and animal experiments(More)
Spatial mapping, the location in space of a perceived location due to an implanted electrode's electrical stimulation is important in the design of visual prostheses. Generally, a visual prosthesis system consists of an implanted electrode array, an external camera that acquires the image, and a transmitter that sends the information to the implanted(More)
  • 1