Learn More
We have cloned a Xenopus cDNA related to the twist gene, which is required for mesodermal differentiation in Drosophila. Northern blots of dissected embryos and in situ hybridization show that the corresponding mRNA, called Xtwi, first appears in early gastrulae, and is present only in mesodermal cells. Within the mesoderm, Xtwi is expressed in the(More)
Using an expression cloning strategy that relies on a functional assay, we have cloned a novel Xenopus homeobox-containing gene, Siamois. Embryos injected in a ventral-vegetal blastomere with as little as 5 pg of Siamois mRNA develop a complete secondary axis, but the progeny of the injected cells do not participate in the secondary axis formation. In(More)
A full-length cDNA clone for the Xenopus intermediate filament gene XIF3 has been isolated. It is very similar in sequence to the rat intermediate filament cDNA clone 73 that is thought to encode the neuronal intermediate filament protein 'peripherin'. By analysing dissected embryos, we show that XIF3 is expressed predominantly in anterior and dorsal(More)
A homeobox sequence has been used to isolate a new Xenopus cDNA, named XIHbox6. A short probe from this gene serves as an early marker of posterior neural differentiation in the Xenopus nervous system. The gene recognized by this cDNA sequence is first transcribed at the late gastrula stage and solely in the posterior neural cells. The gene is expressed(More)
Nuclear reprogramming describes a switch in gene expression of one kind of cell to that of another unrelated cell type. Early studies in frog cloning provided some of the first experimental evidence for reprogramming. Subsequent procedures included mammalian somatic cell nuclear transfer, cell fusion, induction of pluripotency by ectopic gene expression,(More)
In animal development, the first tissues to be formed include such major components as muscle, nerve cord, notochord and the eye. In the vertebrates, all of these tissues are formed by embryonic induction, a process by which some of the cells within a mass of tissue are caused to change their direction of differentiation as a result of close proximity to(More)
Signaling between cells is a widely used mechanism by which cell fate and tissue patterning is determined in development. We review the mechanisms by which signaling between cells is regulated so that a cell receives the right amount of signal, at the right time, to achieve its intended developmental fate and position. In nearly all cases, we find that the(More)
Nuclear reprogramming is potentially important as a route to cell replacement and drug discovery, but little is known about its mechanism. Nuclear transfer to eggs and oocytes attempts to identify the mechanism of this direct route towards reprogramming by natural components. Here we analyze how the reprogramming of nuclei transplanted to Xenopus oocytes(More)
Eomesodermin (Eomes) is a novel Xenopus T-domain gene. In normal development, it is expressed in mesodermal cells in a ventral-to-dorsal gradient of increasing concentration. It reaches its peak expression 1-2 hr before any other known panmesodermal gene. It is strongly inducible by normal vegetal cells and by mesoderm-inducing factors. Ectopic expression(More)
Muscle gene expression is induced a few hours after vegetal cells of a Xenopus blastula are placed in contact with animal cells that normally develop into epidermis and nerve cells. We have used a muscle-specific actin gene probe to determine the timing of gene activation in animal-vegetal conjugates. Muscle actin RNA is first transcribed in a minority of(More)