Learn More
β-Alanine in blood-plasma when administered as A) histidine dipeptides (equivalent to 40 mg · kg−1 bwt of β-alanine) in chicken broth, or B) 10, C) 20 and D) 40 mg · kg−1 bwt β-alanine (CarnoSyn™, NAI, USA), peaked at 428 ± SE 66, 47 ± 13, 374 ± 68 and 833 ± 43 µM. Concentrations regained baseline at 2 h. Carnosine was not detected in plasma with A)(More)
Muscle carnosine synthesis is limited by the availability of β-alanine. Thirteen male subjects were supplemented with β-alanine (CarnoSyn™) for 4 wks, 8 of these for 10 wks. A biopsy of the vastus lateralis was obtained from 6 of the 8 at 0, 4 and 10 wks. Subjects undertook a cycle capacity test to determine total work done (TWD) at 110% (CCT110%) of their(More)
Seven male students were supplemented with β-alanine (β-ALG) for 4 weeks (6.4 g day−1) and seven with a matching placebo (PLG). Subjects undertook 4 weeks of isokinetic training with the right leg (T) whilst the left leg was untrained (UT), serving as a control. Each training session consisted of 10 × 10 maximal 90° extension and flexion contractions at(More)
Carnosine (beta-alanyl-l-histidine) is present in high concentrations in human skeletal muscle. The ingestion of beta-alanine, the rate-limiting precursor of carnosine, has been shown to elevate the muscle carnosine content. We aimed to investigate, using proton magnetic resonance spectroscopy (proton MRS), whether oral supplementation with beta-alanine(More)
. ISMRM Proc Intl Soc Magn Reson Med 2000. http://cds.ismrm. org/ismrm-2000/START.PDF [2007].<lb>25. Lamb GD, Stephenson DG, Bangsbo J, Juel C. Point:counterpoint: Lactic acid accumulation is an advantage/disadvantage during muscle activity. J Appl Physiol 100: 1410–1414, 2006. 26. Lamont C, Miller DJ. Calcium sensitizing action of carnosine and other(More)
Carnosine (Carn) occurs in high concentrations in skeletal muscle is a potent physico-chemical buffer of H+ over the physiological range. Recent research has demonstrated that 6.4 g.day−1 of β-alanine (β-ala) can significantly increase skeletal muscle Carn concentrations (M-[Carn]) whilst the resultant change in buffering capacity has been shown to be(More)
The purpose of this study was to examine the effect of 30 days of beta-alanine supplementation in collegiate football players on anaerobic performance measures. Subjects were randomly divided into a supplement (beta-alanine group [BA], 4.5 g x d(-1) of beta-alanine) or placebo (placebo group [P], 4.5 g x d(-1) of maltodextrin) group. Supplementation began 3(More)
PURPOSE We examined the effect of β-alanine supplementation plus sodium bicarbonate on high-intensity cycling capacity. METHODS Twenty males (age = 25 ± 5 yr, height = 1.79 ± 0.06 m, body mass = 80.0 ± 10.3 kg) were assigned to either a placebo (P) or a β-alanine (BA; 6.4 g·d(-1) for 4 wk) group based on power max, completing four cycling capacity tests(More)
The aim of this study was to investigate the effects of beta-alanine supplementation on exercise capacity and the muscle carnosine content in elderly subjects. Eighteen healthy elderly subjects (60–80 years, 10 female and 4 male) were randomly assigned to receive either beta-alanine (BA, n = 12) or placebo (PL, n = 6) for 12 weeks. The BA group received 3.2(More)
Resistance training is associated with periods of acute intracellular hypoxia with increased H(+) production and low intramuscular pH. The aim of this study was to investigate the possible adaptive response in muscle carnosine (beta-alanyl-L-histidine) in bodybuilders. Extracts of biopsies of m. vastus lateralis of 6 national-level competitive bodybuilders(More)