John A. Trotter

Learn More
Collagen is most abundant in animal tissues as very long fibrils with a characteristic axial periodic structure. The fibrils provide the major biomechanical scaffold for cell attachment and anchorage of macromolecules, allowing the shape and form of tissues to be defined and maintained. How the fibrils are formed from their monomeric precursors is the(More)
In the series-fibred muscle architecture commonly found in large muscles of mammals and birds, the intrafasciculary-terminating muscle fibres have no direct tendinous attachments. Contractile force produced in these fibres must be transmitted between adjacent muscle fibres via the endomysial connective tissue which separates them. The endomysium is thus an(More)
The inability to isolate intact collagen fibrils has limited the study of their growth and structure. Although intact fibrils have been isolated from echinoderms and from embryonic chick tissues, no method has previously succeeded in isolating intact collagen fibrils from a postfoetal vertebrate tissue. Having previously observed that gentamicin weakens rat(More)
The dermis of the sea cucumber Cucumaria frondosa is a mutable collagenous tissue composed of collagen fibrils, microfibrils, proteoglycans, and other soluble and insoluble components. A major constituent of the dermis is a network of 10-14 nm microfibrils which surrounds and penetrates bundles of collagen fibrils. These microfibrils, which are(More)
The inner dermis of the sea cucumber, Cucumaria frondosa, is a mutable collagenous tissue characterized by rapid and reversible changes in its mechanical properties regulated by one or more protein effectors that are released from neurosecretory cells. One such effector, tensilin, is a collagen-fibril binding protein, named for its ability to induce dermis(More)
Quantitative scanning transmission electron microscopy (STEM), implemented on a conventional transmission electron microscope with STEM-attachment, has been a primary tool in our laboratory for the quantitative analysis of collagen fibril assembly in vivo and in vitro. Using this technique, a precise measurement of mass per unit length can be made at(More)
The collagenous tissues of echinoderms, which have the unique capacity to rapidly and reversibly alter their mechanical properties, resemble the collagenous tissues of other phyla in consisting of collagen fibrils in a nonfibrillar matrix. Knowledge of the composition and structure of their collagen fibrils and interfibrillar matrix is thus important for an(More)
Collagen fibrils from sea cucumber (class Holothuroidea) dermis were previously found to grow by coordinated monomer addition at both centers and ends. This analysis of sea urchin (class Echinoidea) collagen fibrils was undertaken to compare the growth characteristics of fibrils from two classes of echinoderms, and to determine whether a single growth model(More)
Sea urchins and sea cucumbers, like other echinoderms, control the tensile properties of their connective tissues by regulating stress transfer between collagen fibrils. The collagen fibrils are spindle-shaped and up to 1 mm long with a constant aspect ratio of approx. 2000. They are organized into a tissue by an elastomeric network of fibrillin(More)