Learn More
A network of multiple brain regions is recruited in face perception. Our understanding of the functional properties of this network can be facilitated by explicating the structural white matter connections that exist between its functional nodes. We accomplished this using functional MRI (fMRI) in combination with fiber tractography on high angular(More)
Feedforward visual object perception recruits a cortical network that is assumed to be hierarchical, progressing from basic visual features to complete object representations. However, the nature of the intermediate features related to this transformation remains poorly understood. Here, we explore how well different computer vision recognition models(More)
Neuroimaging studies of biological motion perception have found a network of coordinated brain areas, the hub of which appears to be the human posterior superior temporal sulcus (STSp). Understanding the functional role of the STSp requires characterizing the response tuning of neuronal populations underlying the BOLD response. Thus far our understanding of(More)
Studies of biological motion have identified specialized neural machinery for the perception of human actions. Our experiments examine behavioral and neural responses to novel, articulating and non-human 'biological motion'. We find that non-human actions are seen as animate, but do not convey body structure when viewed as point-lights. Non-human animations(More)
Highly pathogenic avian influenza A (HPAI), subtype H5N1, remains an emergent threat to the human population. While respiratory disease is a hallmark of influenza infection, H5N1 has a high incidence of neurological sequelae in many animal species and sporadically in humans. We elucidate the temporal/spatial infection of H5N1 in the brain of ferrets(More)
The study of complex computational systems is facilitated by network maps, such as circuit diagrams. Such mapping is particularly informative when studying the brain, as the functional role that a brain area fulfills may be largely defined by its connections to other brain areas. In this report, we describe a novel, non-invasive approach for relating brain(More)
The mid- and high-level visual properties supporting object perception in the ventral visual pathway are poorly understood. In the absence of well-specified theory, many groups have adopted a data-driven approach in which they progressively interrogate neural units to establish each unit's selectivity. Such methods are challenging in that they require(More)
Humans' ability to rapidly and accurately detect, identify and classify faces under variable conditions derives from a network of brain regions highly tuned to face information. The fusiform face area (FFA) is thought to be a computational hub for face processing; however, temporal dynamics of face information processing in FFA remains unclear. Here we use(More)
Human observers readily identify objects with moving parts, and recognize their underlying structure even when the component parts undergo complex movement. This suggests the existence of neural representations that are invariant to motion and state of articulation, which together allow our visual system to maintain 'object constancy'. Ventral temporal(More)
Visual recognition requires connecting perceptual information with contextual information and existing knowledge. The ventromedial temporal cortex (VTC), including the medial fusiform, has been linked with object recognition, paired associate learning, contextual processing, and episodic memory, suggesting that this area may be critical in connecting visual(More)