Learn More
Aziridinyl quinones can be activated by cellular reductases eg. DT-diaphorase and cytochrome P450 reductase to form highly reactive DNA alkylating agents. The mechanisms by which this activation and alkylation take place are many and varied. Using clinically relevant and experimental agents this review will describe many of these mechanisms. The agents(More)
SJG-136, a pyrrolo[2,1-c][1,4]benzodiazepine (PBD) dimer, is a highly efficient interstrand crosslinking agent that reacts with guanine bases in a 5'-GATC-3' sequence in the DNA minor groove. SJG-136 crosslinks form rapidly and persist compared to those produced by conventional crosslinking agents such as nitrogen mustard, melphalan or cisplatin which bind(More)
DNA interstrand cross-links (ICLs) are critical lesions produced by several cancer chemotherapy agents including platinum drugs and nitrogen mustards. We have previously shown in haematological (multiple myeloma) and solid tumours (ovarian cancer) that clinical sensitivity to such agents can result from a defect in DNA ICL processing leading to their(More)
Members of the homologous series of alkanediol dimethanesulphonates of general formula H3C.SO2O.(CH2)n.O.SO2.CH3 have been tested for their ability to produce DNA interstrand crosslinking and DNA sequence selectivity of guanine-N7 alkylation. In a sensitive crosslinking gel assay the efficiency of DNA interstrand crosslink formation, dependent on the(More)
Metastatic cancer in adults usually has a fatal outcome. In contrast, advanced testicular germ cell tumours are cured in over 80% of patients using cisplatin-based combination chemotherapy [1]. An understanding of why these cells are sensitive to chemotherapeutic drugs is likely to have implications for the treatment of other types of cancer. Earlier(More)
Patients with metastatic testis tumors are generally curable using chemotherapy, whereas those with disseminated bladder carcinomas are not. We have compared levels of the nuclear enzyme topoisomerase II in three testis (SuSa, 833K, and GH) and three bladder (RT4, RT112, and HT1376) cancer cell lines which differ in their sensitivity to chemotherapeutic(More)
Drugs that produce covalent interstrand cross-links (ICLs) in DNA remain central to the treatment of cancer, but the cell cycle checkpoints activated by ICLs have received little attention. We have used the fission yeast, Schizosaccharomyces pombe, to elucidate the checkpoint responses to the ICL-inducing anticancer drugs nitrogen mustard and mitomycin C.(More)
FCE 24517, a novel distamycin derivative possessing potent antitumor activity, is under initial clinical investigation in Europe. In spite of the presence of a benzoyl nitrogen mustard group this compound fails to alkylate the N7 position of guanine, the major site of alkylation by conventional nitrogen mustards. Characterisation of DNA-drug adducts(More)
Human SNM1A and SNM1B/Apollo have both been implicated in the repair of DNA interstrand cross-links (ICLs) by cellular studies, and SNM1B is also required for telomere protection. Here, we describe studies on the biochemical characterization of the SNM1A and SNM1B proteins. The results reveal some fundamental differences in the mechanisms of the two(More)
The imidazotetrazine ring is an acid-stable precursor and prodrug of highly reactive alkyl diazonium ions. We have shown that this reactivity can be managed productively in an aqueous system for the generation of aziridinium ions with 96% efficiency. The new compounds are potent DNA alkylators and have antitumor activity independent of the(More)