Learn More
Root elongation and bending require the coordinated expansion of multiple cells of different types. These processes are regulated by the action of hormones that can target distinct cell layers. We use a mathematical model to characterise the influence of the biomechanical properties of individual cell walls on the properties of the whole tissue. Taking a(More)
Auxin is a key regulator of plant growth and development. Within the root tip, auxin distribution plays a crucial role specifying developmental zones and coordinating tropic responses. Determining how the organ-scale auxin pattern is regulated at the cellular scale is essential to understanding how these processes are controlled. In this study, we developed(More)
New tools are required to address the challenge of relating plant hormone levels, hormone responses, wall biochemistry and wall mechanical properties to organ-scale growth. Current vertex-based models (applied in other contexts) can be unsuitable for simulating the growth of elongated organs such as roots because of the large aspect ratio of the cells, and(More)
Over recent decades, we have gained detailed knowledge of many processes involved in root growth and development. However, with this knowledge come increasing complexity and an increasing need for mechanistic modeling to understand how those individual processes interact. One major challenge is in relating genotypes to phenotypes, requiring us to move(More)
This work examines a 1D individual-based model (IBM) for a system of tightly adherent cells, such as an epithelial monolayer. Each cell occupies a bounded region, defined by the location of its endpoints, has both elastic and viscous mechanical properties and is subject to drag generated by adhesion to the substrate. Differential-algebraic equations(More)
Bacteria communicate through small diffusible molecules in a process known as quorum sensing. Quorum-sensing inhibitors are compounds which interfere with this, providing a potential treatment for infections associated with bacterial biofilms. We present an individual-based computational model for a developing biofilm. Cells are aggregated into particles(More)
Regulation of the activity and localization of PIN-FORMED (PIN) membrane proteins, which facilitate efflux of the plant hormone auxin from cells, is important for plants to respond to environmental stimuli and to develop new organs. The protein kinase PINOID (PID) is involved in regulating PIN phosphorylation, and this is thought to affect PIN localization(More)
The optical properties of plant surfaces are strongly determined by the shape of epidermal cells and by the patterning of the cuticle on top of the cells. Combinations of particular cell shapes with particular nanoscale structures can generate a wide range of optical effects. Perhaps most notably, the development of ordered ridges of cuticle on top of flat(More)
The emerging discipline of plant phenomics aims to measure key plant characteristics, or traits, though as yet the set of plant traits that should be measured by automated systems is not well defined. Methods capable of recovering generic representations of the 3D structure of plant shoots from images would provide a key technology underpinning(More)