John A. Buswell

Learn More
The edible straw mushroom, Volvariella volvacea, produces a multicomponent enzyme system consisting of endo-1,4-beta-glucanase, cellobiohydrolase, and beta-glucosidase for the conversion of cellulose to glucose. The highest levels of endoglucanase and cellobiohydrolase were recorded in cultures containing microcrystalline cellulose (Avicel) or filter paper,(More)
The ability to specifically attach chemical probes to individual proteins represents a powerful approach to the study and manipulation of protein function in living cells. It provides a simple, robust and versatile approach to the imaging of fusion proteins in a wide range of experimental settings. However, a potential drawback of detection using chemical(More)
Volvariella volvacea, strain V14, produces multiple forms of extracellular laccase when grown in submerged culture in a defined medium with glucose as sole carbon source, and on cotton waste 'compost' representative of the conditions used for industrial-scale mushroom cultivation. In liquid culture, enzyme synthesis is associated with the onset of secondary(More)
The 2001 Nisqually earthquake, which had a moment magnitude of 6.8, damaged at least 78 bridges in western Washington State. Reports of damage sustained by bridges during this earthquake were used to correlate the likelihood of damage with the following parameters: distance to the epicenter, estimated peak ground acceleration, estimated spectral(More)
The initiating nucleotide found at the 5’ end of primary transcripts has a distinctive triphosphorylated end that distinguishes these transcripts from all other RNA species. Recognizing this distinction is key to deconvoluting the primary transcriptome from the plethora of processed transcripts that confound analysis of the transcriptome. The currently(More)
We used PCR-based methods to clone and sequence four previously unidentified cellulase cDNAs: cbhI-I, cbhI-II, cbhII-I and egII. CbhI-I, cbhI-II and cbhII-I consist of 1710, 1610 and 1453 bp, respectively, and encode for 512, 458 and 442 amino acids, respectively. EgII consists of 1180 bp encoding for 310 amino acids, and belongs to family 61 of the(More)
(the Higher Education Academy) and Trevor Collins (The Open University) for their valuable and insightful suggestions on earlier versions of this guide. I am also very grateful to colleagues in the Higher Education Academy subject centres for meeting with me to discuss and identify issues relating to academic integrity and associated resources. Many thanks(More)
  • 1