Johannes W Hell

Learn More
The establishment of neural circuitry requires vast numbers of synapses to be generated during a specific window of brain development, but it is not known why the developing mammalian brain has a much greater capacity to generate new synapses than the adult brain. Here we report that immature but not mature astrocytes express thrombospondins (TSPs)-1 and -2(More)
Calcium- and calmodulin-dependent protein kinase II (CaMKII) and glutamate receptors are integrally involved in forms of synaptic plasticity that may underlie learning and memory. In the simplest model for long-term potentiation, CaMKII is activated by Ca2+ influx through NMDA (N-methyl-D-aspartate) receptors and then potentiates synaptic efficacy by(More)
The membrane-associated guanylate kinases [Chapsyn-110/postsynaptic density-93 (PSD-93), synapse-associated protein-90 (SAP-90)/PSD-95, and SAP-102] are believed to cluster and anchor NMDA receptors at the synapse and to play a role in signal transduction. We have investigated the developmental changes in expression of these proteins in rat hippocampus(More)
To identify and localize the protein products of genes encoding distinct L-type calcium channels in central neurons, anti-peptide antibodies specific for the class C and class D alpha 1 subunits were produced. Anti-CNC1 directed against class C immunoprecipitated 75% of the L-type channels solubilized from rat cerebral cortex and hippocampus. Anti-CND1(More)
Rapid glutamatergic synaptic transmission is mediated by ionotropic glutamate receptors and depends on their precise localization at postsynaptic membranes opposing the presynaptic neurotransmitter release sites. Postsynaptic localization of N-methyl-D-aspartate-type glutamate receptors may be mediated by the synapse-associated proteins (SAPs) SAP90,(More)
The existence of a large number of receptors coupled to heterotrimeric guanine nucleotide binding proteins (G proteins) raises the question of how a particular receptor selectively regulates specific targets. We provide insight into this question by identifying a prototypical macromolecular signaling complex. The beta(2) adrenergic receptor was found to be(More)
Ca2+ influx through N-methyl-D-aspartate (NMDA)-type glutamate receptors plays a pivotal role in synaptic plasticity during brain development as well as in mature brain. Cyclic AMP-dependent protein kinase (PKA) and members of the protein kinase C (PKC) family are also essential for various forms of synaptic plasticity and regulate the activity of different(More)
Second messengers regulate synaptic plasticity by influencing the balance between kinase and phosphatase activity. One target of this balance is the phosphorylation state of the AMPA receptor glutamate receptor 1 (GluR1) subunit. Hippocampal long-term depression (LTD) is a calcium-dependent downregulation of synaptic AMPA receptor currents associated with(More)
In vitro culturing of primary neurons is a mainstay of neurobiological research. Many of these culture paradigms have taken advantage of defined culture media rather than serum additives that contain undefined survival factors to facilitate experimental manipulations and interpretation of the results. To culture neurons in the absence of serum, defined(More)
The dependence of glutamate uptake on ATP-generated proton electrochemical potential was studied in a highly purified preparation of synaptic vesicles from rat brain. At low chloride concentration (4 mM), the proton pump present in synaptic vesicles generated a large membrane potential (inside-positive), associated with only minor acidification. Under these(More)