Learn More
We present a series of non-stoichiometric cadmium sulfide quantum-dot (QD) models. Using density functional theory (DFT) and semi-empirical molecular orbital (MO) calculations, we explore the ligand binding and exchange chemistry of these models. Their surface morphology allows for these processes to be rationalized on the atomic scale. This is corroborated(More)
Three new unsymmetrical anthracenyl-pentacene derivatives have been synthesized, characterized using X-ray crystallography, and used as semiconductors in OTFTs. For one derivative, ambipolar charge carrier transport was observed with a hole mobility of 0.2 cm(2) V(-1) s(-1) and an electron mobility of 0.03 cm(2) V(-1) s(-1).
In this review we highlight recent progress in the field of photochemically and thermally induced electron transport through molecular bridges as integrative parts of electron donor-bridge-acceptor conjugates. The major emphasis is hereby on the design and the modular composition of the bridges. To this end, we will demonstrate that control over attenuation(More)
We have studied hydrogen-passivated amorphous carbon nanostructures with semiempirical molecular orbital theory in order to provide an understanding of the factors that affect their electronic properties. Amorphous structures were first constructed using periodic calculations in a melt/quench protocol. Pure periodic amorphous carbon structures and their(More)
We have investigated the role of linker molecules in quantum-dot-sensitized solar cells (QDSSCs) using density-functional theory (DFT) and experiments. Linkers not only govern the number of attached QDs but also influence charge separation, recombination, and transport. Understanding their behavior is therefore not straightforward. DFT calculations show(More)
We report the characterization of carbon nanodots (CNDs) synthesized under mild and controlled conditions, that is, in a microwave reactor. The CNDs thus synthesized exhibit homogeneous and narrowly dispersed optical properties. They are thus well suited as a testbed for studies of the photophysics of carbon-based nanoscopic emitters. In addition to(More)
Systematic access to metal-functionalized polyoxometalates has thus far been limited to lacunary tungsten oxide and molybdenum oxide clusters. The first controlled, stepwise bottom-up assembly route to metal-functionalized molecular vanadium oxides is now presented. A di-vacant vanadate cluster with two metal binding sites, (DMA)2[V12O32Cl](3-) (DMA =(More)
A combined experimental and theoretical study shows that the photooxidative activity of two isostructural metal oxide clusters depends on their internal templates. To this end, two halide-templated bismuth vanadium oxide clusters [X(Bi(dmso)3 )2 V12 O33 ](-) (X=Cl(-) , Br(-) ) are reported and fully characterized. The two clusters show similar absorption(More)
In this contribution, we discuss how reaction energy benchmark sets can automatically be created from arbitrary atomization energy databases. As an example, over 11 000 reaction energies derived from the W4-11 database, as well as some relevant subsets are reported. Importantly, there is only very modest computational overhead involved in computing >11 000(More)
A series of ZnP-pCp-oPPV-C60 conjugates covalently connected through [2,2']-paracyclophane-oligophenylenevinylene (pCp-oPPV) bridges containing one, two, and three [2,2']-paracyclophanes (pCps) has been prepared in multistep synthetic procedures involving Horner-Wadsworth-Emmons olefination reactions and/or Heck type Pd-catalyzed reactions. Molecular(More)