Learn More
Clonogenic neural stem cells (NSCs) are self-renewing cells that maintain the capacity to differentiate into brain-specific cell types, and may also replace or repair diseased brain tissue. NSCs can be directly isolated from fetal or adult nervous tissue, or derived from embryonic stem cells. Here, we describe the efficient conversion of human adult bone(More)
It has been proposed that two amino acid substitutions in the transcription factor FOXP2 have been positively selected during human evolution due to effects on aspects of speech and language. Here, we introduce these substitutions into the endogenous Foxp2 gene of mice. Although these mice are generally healthy, they have qualitatively different ultrasonic(More)
Knock-in mice were generated that harbored a leucine-to-serine mutation in the alpha4 nicotinic receptor near the gate in the channel pore. Mice with intact expression of this hypersensitive receptor display dominant neonatal lethality. These mice have a severe deficit of dopaminergic neurons in the substantia nigra, possibly because the hypersensitive(More)
The neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been shown to induce parkinsonism in man and non-human primates. Monoamine-oxidase B (MAO-B) has been reported to be implicated in both MPTP-induced parkinsonism and Parkinson's disease, since selegiline (L-deprenyl), an irreversible MAO-B inhibitor, prevents MPTP-induced neurotoxicity(More)
The identity of nicotinic receptor subtypes sufficient to elicit both the acute and chronic effects of nicotine dependence is unknown. We engineered mutant mice with a4 nicotinic subunits containing a single point mutation, Leu9' --> Ala9' in the pore-forming M2 domain, rendering a4* receptors hypersensitive to nicotine. Selective activation of a4*(More)
The objective of this review is to identify a target or biomarker of altered neurochemical sensitivity that is common to the many animal models of human psychoses associated with street drugs, brain injury, steroid use, birth injury, and gene alterations. Psychosis in humans can be caused by amphetamine, phencyclidine, steroids, ethanol, and brain lesions(More)
We report on generation of dopamine neurons from long-term cultures of human fetal mesencephalic precursor cells. These CNS precursor cells were successfully expanded in vitro using the mitogens epidermal growth factor (EGF) and fibroblast growth factor-2 (FGF-2). Incubation of these cultures in 3% atmospheric oxygen resulted in higher cellular yields than(More)
6-Hydroxydopamine (6-OHDA) is widely used to generate animal models of Parkinson's disease. However, little is known about the intracellular events leading to cell death of dopaminergic neurones. Here we correlate indices of energy production and cell viability in human dopaminergic neuroblastoma SH-SY5Y cells after exposure to 6-OHDA. The toxin induces a(More)
The carrier molecule that transports dopamine (DA) into dopamine neurons by an electrogenic, Na(+)- and Cl(-)-transport-coupled mechanism is known as the dopamine transporter (DAT). This uptake system is exclusively expressed in DA neurons with significantly higher levels of DAT expression in cells of the substantia nigra pars compacta than those of the(More)
The endogenous neurotoxin 1-methyl-6,7-dihydroxy-1,2,3, 4-tetrahydroisoquinoline (salsolinol), which is structurally similar to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), has been reported to inhibit mitochondrial complex I (NADH-Q reductase) activity as does the MPTP metabolite 1-methyl-4-phenylpyridinium ion (MPP(+)). However, the mechanism of(More)