Johannes Schwöbel

Learn More
Although many properties of polyatomic metal clusters have been rationalized by an electron shell model resembling that used for free atoms, it remained unclear how reliable this analogy is with respect to the angular momentum eigenstate character of the electronic wave functions. We studied free size-selected negatively charged clusters of sodium atoms(More)
Chemotypes are a new approach for representing molecules, chemical substructures and patterns, reaction rules, and reactions. Chemotypes are capable of integrating types of information beyond what is possible using current representation methods (e.g., SMARTS patterns) or reaction transformations (e.g., SMIRKS, reaction SMILES). Chemotypes are expressed in(More)
A quantum chemical model is introduced to predict the H-bond donor strength of monofunctional organic compounds from their ground-state electronic properties. The model covers -OH, -NH, and -CH as H-bond donor sites and was calibrated with experimental values for the Abraham H-bond donor strength parameter A using the ab initio and density functional theory(More)
A quantum chemical model has been developed for predicting the hydrogen bond (HB) acceptor strength of monofunctional organic compounds from electronic ground-state properties of the single molecules. Local molecular parameters are used to quantify electrostatic, polarizability, and charge transfer components to hydrogen bonding, employing the ab initio and(More)
Covalent binding of xenobiotic compounds to endogen-ous biomolecular sites, e.g. protein residues, leads to potentially irreversible toxic effects such as enhanced acute toxicity or skin sensitization [1]. This mechanistic knowledge provides the basis for the in silico prediction of these toxicities, as required by the EU REACH legislation and the EU(More)
Covalent binding of xenobiotic electrophiles to nucleo-philic endogenous biomolecules, e.g. peptides or DNA, is a common molecular initiating event, leading to potentially irreversible toxic effects such as enhanced acute toxicity, skin sensitisation, or mutagenicity. This knowledge provides the basis for the in silico prediction of these toxicities. The(More)
  • 1