Learn More
The vitamin D endocrine system is involved in a wide variety of biological processes including bone metabolism, modulation of the immune response, and regulation of cell proliferation and differentiation. Variations in this endocrine system have, thus, been linked to several common diseases, including osteoarthritis (OA), diabetes, cancer, cardiovascular(More)
BACKGROUND Osteoporosis is a common disorder with a strong genetic component. One way in which the genetic component could be expressed is through polymorphism of COLIA1, the gene for collagen type Ialpha1, a bone-matrix protein. METHODS We determined the COLIA1 genotypes SS, Ss, and ss in a population-based sample of 1778 postmenopausal women using a(More)
The incidence of all non-vertebral fractures, as well as the relation to bone mineral density (BMD), was quantified in 7806 men and women from the Rotterdam Study, a prospective, population-based cohort study of men and women aged 55 years and older. In addition, the sensitivity of using a T-score at or below -2.5 for identifying subjects at risk for(More)
Polymorphisms of the vitamin D receptor gene (VDR) have been shown to be associated with several complex diseases, including osteoporosis, but the mechanisms are unknown and study results have been inconsistent. We therefore determined sequence variation across the major relevant parts of VDR, including construction of linkage disequilibrium blocks and(More)
BACKGROUND Very high plasma homocysteine levels are characteristic of homocystinuria, a rare autosomal recessive disease accompanied by the early onset of generalized osteoporosis. We therefore hypothesized that mildly elevated homocysteine levels might be related to age-related osteoporotic fractures. METHODS We studied the association between(More)
Bone quality is an important determinant of osteoporosis, and proper osteoblast differentiation plays an important role in the control and maintenance of bone quality. We investigated the impact of activin signaling on human osteoblast differentiation, extracellular matrix formation, and mineralization. Activins belong to the transforming growth factor-beta(More)
CONTEXT Both bone mineral density (BMD) and fracture risk have a strong genetic component. Estrogen receptor alpha (ESR1) is a candidate gene for osteoporosis, but previous studies of ESR1 polymorphisms in this field were hampered by small sample size, lack of standardization, and inconclusive results. OBJECTIVE To generate large-scale evidence on whether(More)
Conflicting results have been reported on the association between restriction fragment length polymorphisms (RFLPs) at the vitamin D receptor (VDR) gene locus (i.e., for BsmI, ApaI, and TaqI) and bone mineral density (BMD). We analyzed this association in a large population-based sample (n = 1782) of men and women aged 55-80 years using a novel direct(More)
Osteoporosis is a bone disease leading to an increased fracture risk. It is considered a complex multifactorial genetic disorder with interaction of environmental and genetic factors. As a candidate gene for osteoporosis, we studied vitamin D binding protein (DBP, or group-specific component, Gc), which binds to and transports vitamin D to target tissues to(More)
UNLABELLED Both LRP5 and LRP6 genes have been implicated to play a role in bone metabolism. In a large population-based study, we related common variation in both genes to bone parameters and fractures. LRP5 variation was associated to both BMD and frame size, whereas both LRP5 and 6 variations were associated with an increased fracture risk in males. (More)