Johannes Gooth

  • Citations Per Year
Learn More
We report the observation of a thermoelectric power factor in InAs nanowires that exceeds that predicted by a single-band bulk model by up to an order of magnitude at temperatures below about 20 K. We attribute this enhancement effect not to the long-predicted 1D subband effects but to quantum-dot-like states that form in electrostatically nonuniform(More)
Nanowires of bismuth antimony telluride and bismuth telluride selenide (Bi15Sb29Te56 and Bi38Te55Se7) were grown by template-based pulsed electrodeposition. The composition and the crystallinity of the nanowires were determined by high-resolution transmission electron microscopy. The thermoelectric properties (Seebeck coefficient and electrical(More)
NbP is a recently realized Weyl semimetal (WSM), hosting Weyl points through which conduction and valence bands cross linearly in the bulk and exotic Fermi arcs appear. The most intriguing transport phenomenon of a WSM is the chiral anomaly-induced negative magnetoresistance (NMR) in parallel electric and magnetic fields. In intrinsic NbP the Weyl points(More)
Weyl semimetals are often considered the 3D-analogon of graphene or topological insulators. The evaluation of quantum oscillations in these systems remains challenging because there are often multiple conduction bands. We observe de Haas-van Alphen oscillations with several frequencies in a single crystal of the Weyl semimetal niobium phosphide. For each(More)
Locally induced, magnetic order on the surface of a topological insulator nanowire could enable room-temperature topological quantum devices. Here we report on the realization of selective magnetic control over topological surface states on a single facet of a rectangular Bi2Te3 nanowire via a magnetic insulating Fe3O4 substrate. Low-temperature(More)
Nickel-rich NiFe thin films (Ni92Fe8, Ni89Fe11 and Ni83Fe17) were prepared by combining atomic layer deposition (ALD) with a subsequent thermal reduction process. In order to obtain Ni x Fe1-x O y films, one ALD supercycle was performed according to the following sequence: m NiCp2/O3, with m = 1, 2 or 3, followed by one FeCp2/O3 cycle. The supercycle was(More)
InSb nanowire (NW) arrays were prepared by pulsed electrodeposition combined with a porous template technique. The resulting polycrystalline material has a stoichiometric composition (In:Sb = 1:1) and a high length-to-diameter ratio. Based on a combination of Fourier transform infrared spectroscopy (FTIR) analysis and field-effect measurements, the band(More)
The Seebeck coefficient and electrical resistance of Bi1-xSbx nanowire arrays electrodeposited in etched ion-track membranes have been investigated as a function of wire diameter (40-750 nm) and composition (0 ≤ x ≤ 1). The experimental data reveal a non-monotonic dependence between thermopower and wire diameter for three different compositions. Thus, the(More)
Topological insulators (TI) nanowires (NW) are an emerging class of structures, promising both novel quantum effects and potential applications in low-power electronics, thermoelectrics and spintronics. However, investigating the electronic states of TI NWs is complicated, due to their small lateral size, especially at room temperature. Here, we perform(More)
Ab initio electronic structure calculations based on density functional theory and tight-binding methods for the thermoelectric properties of p-type Sb2Te3 films are presented. The thickness-dependent electrical conductivity and the thermopower are computed in the diffusive limit of transport based on the Boltzmann equation. Contributions of the bulk and(More)