Learn More
A k–nucleus of a normal rational curve in PG(n, F) is the intersection over all k–dimensional osculating subspaces of the curve (k ∈ {−1, 0,. .. , n − 1}). It is well known that for characteristic zero all nuclei are empty. In case of characteristic p > 0 and #F ≥ n the number of non–zero digits in the representation of n + 1 in base p equals the number of(More)
Kurzfassung Sei K ein (kommutativer) Körper und PG(n, K) der n-dimensionale projektive Raumüber dem (n + 1)-dimensionalen Vektorraum K n+1. Unter einer rationalen Normkurve in PG(n, K) verstehen wir die Punktmenge und jede dazu projektiväquivalente Menge. Gilt für die Charakteristik des Grundkörpers die Einschränkung charK = 0, dann können in Analogie zur(More)
Each normal rational curve Γ in PG(n, F) admits a group PΓL(Γ) of automorphic collineations. It is well known that for characteristic zero only the empty and the entire subspace are PΓL(Γ)–invariant. In case of characteristic p > 0 there may be further invariant subspaces. For #F ≥ n + 2, we give a construction of all PΓL(Γ)–invariant subspaces. It turns(More)
  • 1