Johannes G E Gardeniers

Learn More
Ultrasonically Activated Irrigation makes use of an ultrasonically oscillating file in order to improve the cleaning of the root canal during a root canal treatment. Cavitation has been associated with these oscillating files, but the nature and characteristics of the cavitating bubbles were not yet fully elucidated. Using sensitive equipment, the(More)
Nanopatterns on titanium may enhance endosseous implant biofunctionality. To enable biological studies to prove this hypothesis, we developed a scalable method of fabricating nanogrooved titanium substrates. We defined nanogrooves by nanoimprint lithography (NIL) and a subsequent pattern transfer to the surface of ASTM grade 2 bulk titanium applying a(More)
During the last decade, pocket-sized analytical equipment based on the "lab-on-a-chip" approach has become available. These chips, in combination with portable electronic equipment, are applicable in, for example, "point-of-care" ion analysis of body fluids, forensics, identification of explosives, tracking of pollution in environmental or waste waters,(More)
Organised nanotopography mimicking the natural extracellular matrix can be used to control morphology, cell motility, and differentiation. However, it is still unknown how specific cell types react with specific patterns. Both initial adhesion and preferential cell migration may be important to initiate and increase cell locomotion and coverage with cells,(More)
AbstructA novel electrochemical microactuator made with the use of silicon micromachining techniques, and its feasibility, are presented. Gas pressure is generated by electrolysis of an aqueous electrolyte solution. The pressure built up is used to change the deflection of a membrane. The actuator has three states: the electrolysis state, in which the(More)
A theory is presented which describes the initial direct wafer bonding process. The effect of surface microroughness on the bondability is studied on the basis of the theory of contact and adhesion of elastic solids. An effective bonding energy, the maximum of which is the specific surface energy of adhesion, is proposed to describe the real binding energy(More)
A supramolecular platform based on self-assembled monolayers (SAMs) has been implemented in a microfluidic device. The system has been applied for the sensing of two different analyte types: biologically relevant phosphate anions and aromatic carboxylic acids, which are important for anthrax detection. A Eu(III)-EDTA complex was bound to β-cyclodextrin(More)
Evaporation-driven particle self-assembly can be used to generate three-dimensional microstructures. We present a unique method to create colloidal microstructures in which we can control the amount of particles and their packing fraction. To this end, we evaporate colloidal dispersion droplets on a special type of superhydrophobic microstructured surface,(More)
A novel route towards chip integrated NMR analysis is evaluated. The basic element in the design is a stripline RF 'coil' which can be defined in a single layer lithographic process and which is fully scalable to smaller dimensions. The sensitivity of such a planar structure can be superior to that of a conventional 3D helix. The basic properties, such as(More)
The application of a three dimensional, self-aligning shadow mask in 110 -oriented silicon for thin-film metal deposition is discussed. This shadow mask is used for the deposition of metal tracks on the bottom of structures with vertical sidewalls, i.e., the patterning of metal catalytic patches underneath the membrane that covers the deep flow channel of a(More)