Johannes Frank W Nijsen

Learn More
Micelles are colloidal particles with a size around 5–100 nm which are currently under investigation as carriers for hydrophobic drugs in anticancer therapy. Currently, five micellar formulations for anticancer therapy are under clinical evaluation, of which Genexol-PM has been FDA approved for use in patients with breast cancer. Micelle-based drug(More)
BACKGROUND The efficacy of radioembolisation for the treatment of liver tumours depends on the selective distribution of radioactive microspheres to tumorous tissue. The distribution of holmium-166 ((166)Ho) poly(L-lactic acid) microspheres can be visualised in vivo by both single-photon-emission CT (SPECT) and MRI. In this phase 1 clinical trial, we aimed(More)
PURPOSE To investigate the use of magnetic resonance (MR) imaging in the administration and biodistribution of holmium-loaded poly(L-lactic acid) microspheres (Ho-PLLA-MS) in liver tumors. MATERIALS AND METHODS MR imaging measurements were obtained in phantoms, three ex vivo rabbit livers, and four livers in living rabbits. When applicable, measurements(More)
UNLABELLED In hepatic (90)Y radioembolization, pretreatment (99m)Tc-macroaggregated albumin ((99m)Tc-MAA) nuclear imaging is used for lung shunt analysis, evaluation of extrahepatic deposition, and sometimes for treatment planning, using a partition model. A high level of agreement between pretreatment (99m)Tc-MAA distribution and final (90)Y-microsphere(More)
In internal radiation therapy of unresectable liver tumors, microspheres containing a radionuclide are injected in the hepatic artery to achieve a preferential deposition of microspheres in the lesions. In this study, MR imaging techniques for qualitative and quantitative assessment of the biodistribution of holmium-loaded microspheres (HoMS) were(More)
The clinical application of holmium-loaded poly(L-lactic acid) (PLLA) microspheres for the radionuclide treatment of liver malignancies requires in depth understanding of the degradation characteristics of the microspheres. To this end, an in-vitro degradation study was conducted. PLLA-microspheres with and without HoAcAc loading, and before and after(More)
UNLABELLED (166)Ho-poly(l-lactic acid) microspheres allow for quantitative imaging with MR imaging or SPECT for microsphere biodistribution assessment after radioembolization. The purpose of this study was to evaluate SPECT- and MR imaging-based dosimetry in the first patients treated with (166)Ho radioembolization. METHODS Fifteen patients with(More)
Stem cell therapy is a new strategy for chronic ischaemic heart disease in patients. However, no consensus exists on the most optimal delivery strategy. This randomized study was designed to assess cell delivery efficiency of three clinically relevant strategies: intracoronary (IC) and transendocardial (TE) using electromechanical mapping guidance (NOGA)(More)
In cancer therapy, a promising treatment option to accomplish a high tumor-to-normal-tissue ratio is endovascular intervention with microsized particles, such as embolotherapy. In this study, alginate microspheres (ams) were prepared with the JetCutter technique, which is based on cutting a sodium alginate solution jet stream into small droplets of uniform(More)
Holmium-loaded PLLA microspheres are useful systems in radioembolization therapy of liver metastases because of their low density, biodegradability and favourable radiation characteristics. Neutron activated Ho-loaded microspheres showed a surprisingly low release of the relatively small holmium complex. In this paper factors responsible for this behaviour(More)