Johannes D. Clausen

Learn More
The host cell cytoskeleton is known to play a vital role in the life cycles of several pathogenic intracellular microorganisms by providing the basis for a successful invasion and by promoting movement of the pathogen once inside the host cell cytoplasm. McCoy cells infected with Chlamydia trachomatis serovars E or L2 revealed, by indirect(More)
The sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) couples ATP hydrolysis to transport of Ca(2+). This directed energy transfer requires cross-talk between the two Ca(2+) sites and the phosphorylation site over 50 Å distance. We have addressed the mechano-structural basis for this intramolecular signal by analysing the structure and the functional(More)
Mutants in which Thr-353 of the Ca(2+)-ATPase of sarcoplasmic reticulum had been replaced with alanine, serine, glutamine, cysteine, valine, aspartate, or tyrosine were analyzed functionally. All the mutations severely affected MgATP binding, whereas ATP binding was close to normal in the alanine, serine, glutamine, and valine mutants. In the serine and(More)
In patients with hyperkalemic periodic paralysis (HyperKPP), attacks of muscle weakness or paralysis are triggered by K(+) ingestion or rest after exercise. Force can be restored by muscle work or treatment with β(2)-adrenoceptor agonists. A missense substitution corresponding to a mutation in the skeletal muscle voltage-gated Na(+) channel (Na(v)1.4,(More)
Crystal structures have shown that the conserved TGES loop of the Ca2+-ATPase is isolated in the Ca2E1 state but becomes inserted in the catalytic site in E2 states. Here, we have examined the kinetics of the partial reaction steps of the transport cycle and the binding of the phosphoryl analogs BeF, AlF, MgF, and vanadate in mutants with alterations to the(More)
Membrane proteins are key players in biological systems, mediating signalling events and the specific transport of e.g. ions and metabolites. Consequently, membrane proteins are targeted by a large number of currently approved drugs. Understanding their functions and molecular mechanisms is greatly dependent on structural information, not least on complexes(More)
Nine single mutations were introduced to amino acid residues Thr441, Glu442, Lys515, Arg560, Cys561, and Leu562 located in the nucleotide-binding domain of sarcoplasmic reticulum Ca2+-ATPase, and the functional consequences were studied in a direct nucleotide binding assay, as well as by steady-state and transient kinetic measurements of the overall and(More)
The recently determined crystal structures of the sarcoplasmic reticulum Ca(2+)-ATPase show that in the E(1)Ca(2) form, domain A is almost isolated from the other cytoplasmic domains, P and N, whereas in E(2), domain A has approached domains P and N, with E183 of the highly conserved P-type ATPase signature sequence TGES in domain A now being close to the(More)
Residues in conserved motifs (625)TGD, (676)FARXXPXXK, and (701)TGDGVND in domain P of sarcoplasmic reticulum Ca(2+)-ATPase, as well as in motifs (601)DPPR and (359)NQR(/K)MSV in the hinge segments connecting domains N and P, were examined by mutagenesis to assess their roles in nucleotide and Mg(2+) binding and stabilization of the Ca(2+)-activated(More)
In recent years crystal structures of the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA1a), stabilized in various conformations with nucleotide and phosphate analogs, have been obtained. However, structural analysis of mutant forms would also be valuable to address key mechanistic aspects. We have worked out a procedure for affinity purification of SERCA1a(More)