Johannes Courtial

Learn More
We demonstrate the transfer of information encoded as orbital angular momentum (OAM) states of a light beam. The transmitter and receiver units are based on spatial light modulators, which prepare or measure a laser beam in one of eight pure OAM states. We show that the information encoded in this way is resistant to eavesdropping in the sense that any(More)
We propose an interferometric method for measuring the orbital angular momentum of single photons. We demonstrate its viability by sorting four different orbital angular momentum states, and are thus able to encode two bits of information on a single photon. This new approach has implications for entanglement experiments, quantum cryptography and high(More)
We present a method to efficiently sort orbital angular momentum (OAM) states of light using two static optical elements. The optical elements perform a Cartesian to log-polar coordinate transformation, converting the helically phased light beam corresponding to OAM states into a beam with a transverse phase gradient. A subsequent lens then focuses each(More)
We have developed holographic optical tweezers that can manipulate many particles simultaneously in three dimensions in order to create micro-crystal structures that extend over many tens of microns. The technique uses specific hologram-design algorithms to create structures that can be dynamically scaled or rotated about arbitrary axes. We believe the(More)
We have developed software with an interactive user interface that can be used to generate phase holograms for use with spatial light modulators. The program utilizes different hologram design techniques, allowing the user to select an appropriate algorithm. The program can be used to generate multiple beams and can be used for beam steering. We see a major(More)
The micromanipulation of objects into 3-dimensional geometries within holographic optical tweezers is carried out using modified Gerchberg-Saxton (GS) and direct binary search (DBS) algorithms to produce the hologram designs. The algorithms calculate sequences of phase holograms, which are implemented using a spatial light modulator, to reconfigure the(More)
Optical vortices generically arise when optical beams are combined. Recently, we reported how several laser beams containing optical vortices could be combined to form optical vortex loops, links and knots embedded in a light beam (Leach et al 2004). Here, we describe in detail the experiments in which vortex loops form these structures. The experimental(More)
Phase-hologram patterns that can shape the intensity distribution of a light beam in several planes simultaneously can be calculated with an iterative Gerchberg-Saxton algorithm [T. Haist et al., Opt. Commun. 140, 299 (1997)]. We apply this algorithm in holographic optical tweezers. This allows us to simultaneously trap several objects in individually(More)
We propose interferometric methods capable of measuring either the total angular momentum, or simultaneously measuring the spin and orbital angular momentum of single photons. This development enables the measurement of any angular momentum eigenstate of a single photon. The work allows the investigation of single-photon two-qubit entangled states and has(More)
Destructive interference may lead to complete cancellation when light waves travelling in different directions cross, and in three-dimensional space this occurs along lines that are vortices of electromagnetic energy flow. Here we confirm theoretical predictions by experimentally creating combinations of optical laser beams in which these dark threads form(More)