Learn More
Several current brain imaging techniques rest on the assumption of a tight coupling between neural activity and hemodynamic response. The nature of this neurovascular coupling, however, is not completely understood. There is some evidence for a decoupling of these processes at the onset of neural activity, which manifests itself as a momentary increase in(More)
In robot assisted gait training, a pattern of human locomotion is executed repetitively with the intention to restore the motor programs associated with walking. Several studies showed that active contribution to the movement is critical for the encoding of motor memory. We propose to use brain monitoring techniques during gait training to encourage active(More)
Voluntary drive is crucial for motor learning, therefore we are interested in the role that motor planning plays in gait movements. In this study we examined the impact of an interactive Virtual Environment (VE) feedback task on the EEG patterns during robot assisted walking. We compared walking in the VE modality to two control conditions: walking with a(More)
Monitoring and interpreting (sub)cortical reorganization after stroke may be useful for selecting therapies and improving rehabilitation outcome. To develop computational models that predict behavioral motor improvement from changing brain activation pattern, we are currently working on the implementation of a clinically feasible experimental set-up, which(More)
Investigating human brain function is essential to develop models of cortical involvement during walking. Such models could advance the analysis of motor impairments following brain injuries (e.g., stroke) and may lead to novel rehabilitation approaches. In this work, we applied high-density EEG source imaging based on individual anatomy to enable(More)
Impairment of an individual's ability to communicate is a major hurdle for active participation in education and social life. A lot of individuals with cerebral palsy (CP) have normal intelligence, however, due to their inability to communicate, they fall behind. Non-invasive electroencephalogram (EEG) based brain-computer interfaces (BCIs) have been(More)
UNLABELLED Everyday locomotion and obstacle avoidance requires effective gait adaptation in response to sensory cues. Many studies have shown that efficient motor actions are associated with μ rhythm (8-13 Hz) and β band (13-35 Hz) local field desynchronizations in sensorimotor and parietal cortex, whereas a number of cognitive task studies have reported(More)
Given the prevalence and cost of workplace bullying, and the degree to which the systemic issues that support it are not soon to change for the American worker, this thesis will educate pastors on how, through the study of select psalms, they might go about counseling victims of this devastating form of interpersonal sin. The thesis will employ the research(More)
  • 1