Johanna Soikkeli

Learn More
Accumulating evidence indicates that interactions between cancer cells and stromal cells are important for the development/progression of many cancers. Herein, we found that the invasive growth of melanoma cells in three-dimensional-Matrigel/collagen-I matrices is dramatically increased on their co-culture with embryonic or adult skin fibroblasts. Studies(More)
Although the outgrowth of micrometastases into macrometastases is the rate-limiting step in metastatic progression and the main determinant of cancer fatality, the molecular mechanisms involved have been little studied. Here, we compared the gene expression profiles of melanoma lymph node micro- and macrometastases and unexpectedly found no common(More)
Melanoma is notorious for its high tendency to metastasize and its refractoriness to treatment thereafter. Metastasis is believed to occur mostly through the lymphatic system, and the status of sentinel lymph nodes is currently recognized as the best prognostic indicator. Unfortunately, the lymphatic metastatic process is still poorly understood and the(More)
Malignant melanomas are characterized by their high propensity to invade and metastasize, but the molecular mechanisms of these traits have remained elusive. Our DNA microarray analyses of benign nevi and melanoma tissue specimens revealed that the genes encoding extracellular matrix proteins tenascin-C (TN-C), fibronectin (FN), and procollagen-I (PCOL-I)(More)
Melanoma is a malignancy characterized by high invasive/metastatic potential, with no efficient therapy after metastasis. Understanding the molecular mechanisms underlying the invasive/metastatic tendency is therefore important. Our genome-wide gene expression analyses revealed that human melanoma cell lines WM793 and especially WM239 (vertical growth phase(More)
Overexpression of osteopontin (OPN) is strongly associated with the invasiveness/metastasis of many cancers, including melanomas. However, the molecular mechanisms of OPN in these processes remain poorly understood. We found that forced expression of OPN in early vertical-growth-phase melanoma cells dramatically increased their migration/invasion and(More)
  • 1