Learn More
This paper presents a novel modeling and control approach for the aggregation of large numbers of heterogeneous thermostatically controlled loads, such as refrigerators , electric water heaters, and air conditioners, and their usage for Demand Response. Unlike traditional Demand Response methods that act on time scales of hours, this approach is able to(More)
Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works. Abstract—This(More)
— We investigate the potential for aggregations of residential thermostatically controlled loads (TCLs), such as air conditioners, to arbitrage intraday wholesale electricity market prices via non-disruptive direct load control. Since wholesale electricity prices reflect power system conditions, arbitrage provides a service to the grid, helping to balance(More)
ARUBA (Arsenic Removal Using Bottom Ash) has proven effective at removing high concentrations of arsenic from drinking water in Bangladesh. During fieldwork in four sub-districts of the country, ARUBA reduced arsenic levels ranging from 200 to 900 ppb to below the Bangladesh standard of 50 ppb. The technology is cost-effective because the substrate—bottom(More)
Controlling electric loads to deliver power system services presents a number of interesting challenges. For example, changes in electricity consumption of Commercial and Industrial (C&I) facilities are usually estimated using counterfactual baseline models, and model uncertainty makes it difficult to precisely quantify control responsiveness. Moreover, C&I(More)
We present methods for analyzing commercial and industrial facility 15-minute-interval electric load data. These methods allow building managers to better understand their facility's electricity consumption over time and to compare it to other buildings, helping them to 'ask the right questions' to discover opportunities for demand response, energy(More)
We describe laboratory and field results of a novel arsenic removal adsorbent called 'Arsenic Removal Using Bottom Ash' (ARUBA). ARUBA is prepared by coating particles of coal bottom ash, a waste material from coal fired power plants, with iron (hydr)oxide. The coating process is simple and conducted at room temperature and atmospheric pressure. Material(More)
—We investigate the potential for aggregations of residential thermostatically controlled loads (TCLs), such as air conditioners, to arbitrage intraday wholesale electricity market prices via non-disruptive load control. We present two arbitrage approaches: 1) a benchmark that gives us an optimal policy but requires local computation or real-time(More)
We present an Open Automated Demand Response Communications Specifications (OpenADR) data model capable of communicating real-time prices to electricity customers. We also show how the same data model could be used to for other types of dynamic pricing tariffs (including peak pricing tariffs, which are common throughout the United States). Customers(More)