Johann Gassenhuber

Learn More
The Saccharomyces cerevisiae alg3-1 mutant is described as defective in the biosynthesis of dolichol-linked oligosaccharides (Huffaker and Robbins, Proc. Natl. Acad. Sci. USA, 80, 7466-7470, 1983). Man5GlcNAc2-PP-Dol accumulates in alg3 cells and Endo H resistant carbohydrates are transferred to protein by the oligosaccharyltransferase complex. In this(More)
Yeast chromosomes terminate in tracts of simple repetitive DNA (poly[G1-3T]). Mutations in the gene TEL1 result in shortened telomeres. Sequence analysis of TEL1 indicates that it encodes a very large (322 kDa) protein with amino acid motifs found in phosphatidylinositol/protein kinases. The closest homolog to TEL1 is the human ataxia telangiectasia gene.
We report the primary sequence of TASK-4, a novel member of the acid-sensitive subfamily of tandem pore K(+) channels. TASK-4 transcripts are widely expressed in humans, with highest levels in liver, lung, pancreas, placenta, aorta and heart. In Xenopus oocytes TASK-4 generated K(+) currents displaying a marked outward rectification which was lost by(More)
With the complete human genomic sequence being unraveled, the focus will shift to gene identification and to the functional analysis of gene products. The generation of a set of cDNAs, both sequences and physical clones, which contains the complete and noninterrupted protein coding regions of all human genes will provide the indispensable tools for the(More)
We report the sequence analysis of a 78,601 bp DNA segment on the left arm of chromosome II of Saccharomyces cerevisiae. This 78.6 kb segment spans the region from the start of a subtelomeric Y' element up to the ILS1 gene. It contains 49 open reading frames (ORFs) with more than 100 amino acids length including 14 internal and five overlapping ORFs. The(More)
AS160 (AKT substrate of 160 kDa) is an important mediator of GLUT4 (glucose transporter 4) translocation and glucose-uptake in adipocytes and muscle cells. In our study we have identified a novel splice variant of AS160 (variant 2 of AS160, AS160_v2) that lacks exon 11 and 12. The protein is phosphorylated in response to insulin via the PI3K/AKT pathway.(More)
Cathepsin A (CTSA) is a lysosomal carboxypeptidase present at the cell surface and secreted outside the cell. Additionally, CTSA binds to β-galactosidase and neuraminidase 1 to protect them from degradation. CTSA has gained attention as a drug target for the treatment of cardiac hypertrophy and heart failure. Here, we investigated the impact of CTSA on the(More)
CONDITIONAL TARGETZNG OF GLYCOSYLTRANSFERASE GENES Thierry Hennet and Jamey D. Marth Howard Hughes Medical Institute and the Division of Cellular and Molecular Medicine, University of California San Diego, CA To address the role of specific glycosylation pathways in mammalian development and physiology, we have generated mice with nullmutations in genes(More)
Myocardial infarction (MI) is a major cause of heart failure. The carboxypeptidase cathepsin A is a novel target in the treatment of cardiac failure. We aim to show that recently developed inhibitors of the protease cathepsin A attenuate post-MI heart failure. Mice were subjected to permanent left anterior descending artery (LAD) ligation or sham operation.(More)
  • 1