Learn More
New directives of the European Union require operators of waste-to-energy (WTE) plants to report the amount of electricity that is produced from renewable sources in the waste feed. Until now, the standard method to determine the portion of renewable electricity is sorting the wastes into defined fractions of fossil organic and biogenic waste components and(More)
A field application of the radiocarbon ((14)C) method was developed to determine the ratio of biogenic vs. fossil CO(2) emissions from waste-to-energy plants (WTE). This methodology can be used to assign the Kyoto relevant share of fossil CO(2) emissions, which is highly relevant for emission budgets and emission trading. Furthermore, heat and electricity(More)
Landfill aeration has been proven to accelerate the degradation of organic matter in landfills in comparison to anaerobic decomposition. The present study aims to evaluate pools of organic matter decomposing under aerobic and anaerobic conditions using landfill simulation reactors (LSR) filled with 40 year old waste from a former MSW landfill. The LSR were(More)
Municipal solid waste (MSW) landfills are potential long-term sources of emissions. Hence, they need to be managed after closure until they do not pose a threat to humans or the environment. The case study on the Breitenau MSW landfill was performed to evaluate future emission levels for this site and to illustrate the effect of final cover installation(More)
Investigations into laboratory reactors and landfills are used for simulating and predicting emissions from municipal solid waste landfills. We examined water flow and solute transport through the same waste body for different volumetric scales (laboratory experiment: 0.08 m(3), landfill: 80,000 m(3)), and assessed the differences in water flow and leachate(More)
Municipal solid waste landfills pose a threat on environment and human health, especially old landfills which lack facilities for collection and treatment of landfill gas and leachate. Consequently, missing information about emission flows prevent site-specific environmental risk assessments. To overcome this gap, the combination of waste sampling and(More)
This study aimed to determine whether the waste management systems, that are presently applied in affluent countries are appropriate solutions for waste management in less developed regions. For this purpose, three cities (Vienna, Damascus and Dhaka) which differ greatly in their gross domestic product and waste management were compared. The criteria for(More)
In recent years thermal utilization of mixed wastes and solid recovered fuels has become of increasing importance in European waste management. Since wastes or solid recovered fuels are generally composed of fossil and biogenic materials, only part of the CO(2) emissions is accounted for in greenhouse gas inventories or emission trading schemes. A promising(More)
Municipal solid waste landfills need to be managed after closure. This so-called aftercare comprises the treatment and monitoring of residual emissions as well as the maintenance and control of landfill elements. The measures can be terminated when a landfill does not pose a threat to the environment any more. Consequently, the evaluation of landfill(More)
Solid residues generated at European Waste to Energy plants contain altogether about 69,000 t/a of Zn, of which more than 50% accumulates in air pollution control residues, mainly boiler and filter ashes. Intensive research activities aiming at Zn recovery from such residues recently resulted in a technical scale Zn recovery plant at a Swiss waste(More)