Johann Coraux

Learn More
Low-pressure chemical vapor deposition allows one to grow high structural quality monolayer graphene on Ir(111). Using scanning tunneling microscopy, we show that graphene prepared this way exhibits remarkably large-scale continuity of its carbon rows over terraces and step edges. The graphene layer contains only a very low density of defects. These are(More)
The nonlocal van der Waals density functional approach is applied to calculate the binding of graphene to Ir(111). The precise agreement of the calculated mean height h = 3.41  Å of the C atoms with their mean height h = (3.38±0.04)  Å as measured by the x-ray standing wave technique provides a benchmark for the applicability of the nonlocal functional. We(More)
Epitaxial graphene on Ir(111) prepared in excellent structural quality is investigated by angle-resolved photoelectron spectroscopy. It clearly displays a Dirac cone with the Dirac point shifted only slightly above the Fermi level. The moiré resulting from the overlaid graphene and Ir(111) surface lattices imposes a superperiodic potential giving rise to(More)
Following graphene growth by thermal decomposition of ethylene on Ir(111) at high temperatures we analyzed the strain state and the wrinkle formation kinetics as function of temperature. Using the moiré spot separation in a low energy electron diffraction pattern as a magnifying mechanism for the difference in the lattice parameters between Ir and graphene,(More)
On the graphene moiré on Ir(111) a variety of highly perfect cluster superlattices can be grown as shown is for Ir, Pt, W, and Re. Even materials that do not form cluster superlattices upon room temperature deposition may be grown into such by low temperature deposition or the application of cluster seeding through Ir as shown for Au, AuIr, FeIr. Criteria(More)
Moiré superlattices in graphene supported on various substrates have opened a new avenue to engineer graphene's electronic properties. Yet, the exact crystallographic structure on which their band structure depends remains highly debated. In this scanning tunneling microscopy and density functional theory study, we have analysed graphene samples grown on(More)
Strains strongly affect the properties of low-dimensional materials, such as graphene. By combining in situ, in operando, reflection high-energy electron diffraction experiments with first-principles calculations, we show that large strains, above 2%, are present in graphene during its growth by chemical vapor deposition on Ir(111) and when it is subjected(More)
We report a new way to strongly couple graphene to a superconductor. The graphene monolayer has been grown directly on top of a superconducting Re(0001) thin film and characterized by scanning tunneling microscopy and spectroscopy. We observed a moiré pattern due to the mismatch between Re and graphene lattice parameters that we have simulated with ab(More)