Johan Zetterberg

Learn More
The diagnostic techniques for simultaneous velocity and relative OH distribution, simultaneous temperature and relative OH distribution, and three component velocity mapping are described. The data extracted from the measurements include statistical moments for inflow fluid dynamics, temperature, conditional velocities, and scalar flux. The work is a first(More)
The presence of IgE-bearing lymphocytes in nasal polyps was correlated with the patients' atopic status. Following surgical removal, the polyp tissue was treated with hyaluronidase and a single-cell suspension was obtained. Lymphocytes were isolated by gradient centrifugation, and the fluorescent antibody technique was used to study the presence of various(More)
We report the first experiment carried out on an in situ setup, which allows for detection of CO(2) from catalytic CO oxidation close to a model catalyst under realistic reaction conditions by the means of planar laser-induced fluorescence (PLIF) in the mid-infrared spectral range. The onset of the catalytic reaction as a function of temperature was(More)
In recent years, efforts have been made in catalysis related surface science studies to explore the possibilities to perform experiments at conditions closer to those of a technical catalyst, in particular at increased pressures. Techniques such as high pressure scanning tunneling/atomic force microscopy (HPSTM/AFM), near ambient pressure x-ray(More)
The gas composition surrounding a catalytic sample has direct impact on its surface structure, which is essential when in situ investigations of model catalysts are performed. Herein a study of the gas phase close to a Pd(110) surface during CO oxidation under semirealistic conditions is presented. Images of the gas phase, provided by planar laser-induced(More)
Visualizing and measuring the gas distribution in close proximity to a working catalyst is crucial for understanding how the catalytic activity depends on the structure of the catalyst. However, existing methods are not able to fully determine the gas distribution during a catalytic process. Here we report on how the distribution of a gas during a catalytic(More)
Hydrocarbon autoignition has long been an area of intense fundamental chemical interest, and is a key technological process for emerging clean and efficient combustion strategies. Carbon-centered radicals containing an -OOH group, commonly denoted ˙QOOH radicals, are produced by isomerization of the alkylperoxy radicals that are formed in the first stages(More)
Two-dimensional temperature measurements using filtered Rayleigh scattering (FRS) have been demonstrated. A tunable single-longitudinal-mode alexandrite laser was employed to provide the tunable narrow-line-width ultraviolet laser beam at 254 nm. Isotopic-enhanced mercury was utilized as an ultraviolet atomic filter. The strong absorption of the filter(More)
In situ knowledge of the gas phase around a catalyst is essential to make an accurate correlation between the catalytic activity and surface structure in operando studies. Although ambient pressure X-ray photoelectron spectroscopy (AP-XPS) can provide information on the gas phase as well as the surface structure of a working catalyst, the gas phase detected(More)
The application of midinfrared polarization spectroscopy (mid-IRPS) is demonstrated for sensitive detection of minor molecular species in combustion environments by probing rovibrational transitions. High resolution mid-IRPS spectra of low pressure flames were obtained in the spectral range around 3 microm. Rotational lines of the fundamental vibrational(More)