Learn More
The nuclear space is mostly occupied by chromosome territories and nuclear bodies. Although this organization of chromosomes affects gene function, relatively little is known about the role of nuclear bodies in the organization of chromosomal regions. The nucleolus is the best-studied subnuclear structure and forms around the rRNA repeat gene clusters on(More)
The hippocampal expression profiles of wild-type mice and mice transgenic for deltaC-doublecortin-like kinase were compared with Solexa/Illumina deep sequencing technology and five different microarray platforms. With Illumina's digital gene expression assay, we obtained approximately 2.4 million sequence tags per sample, their abundance spanning four(More)
Consistent gene mutation nomenclature is essential for efficient and accurate reporting, testing, and curation of the growing number of disease mutations and useful polymorphisms being discovered in the human genome. While a codified mutation nomenclature system for simple DNA lesions has now been adopted broadly by the medical genetics community, it is(More)
BACKGROUND Duchenne's muscular dystrophy is associated with severe, progressive muscle weakness and typically leads to death between the ages of 20 and 35 years. By inducing specific exon skipping during messenger RNA (mRNA) splicing, antisense compounds were recently shown to correct the open reading frame of the DMD gene and thus to restore dystrophin(More)
BACKGROUND The identification of transcription factor binding sites is difficult since they are only a small number of nucleotides in size, resulting in large numbers of false positives and false negatives in current approaches. Computational methods to reduce false positives are to look for over-representation of transcription factor binding sites in a set(More)
The dystrophin deficiency leading to the severely progressing muscle degeneration in Duchenne muscular dystrophy (DMD) patients is caused by frame-shifting mutations in the DMD gene. We are developing a reading frame correction therapy aimed at the antisense-induced skipping of targeted exons from the pre-mRNA. Despite introducing a (larger) deletion, an(More)
BACKGROUND Currently molecular diagnostic laboratories focus only on the identification of large deletion and duplication mutations (spanning one exon or more) for Duchenne Muscular Dystrophy (DMD) yielding 65% of causative mutations. These mutations are detected by an existing set of multiplexed polymerase chain reaction (PCR) primer pairs. Due to the(More)
Within the Netherlands a national network of biobanks has been established (Biobanking and Biomolecular Research Infrastructure-Netherlands (BBMRI-NL)) as a national node of the European BBMRI. One of the aims of BBMRI-NL is to enrich biobanks with different types of molecular and phenotype data. Here, we describe the Genome of the Netherlands (GoNL), one(More)
Despite high levels of homology, transcription coactivators p300 and CREB binding protein (CBP) are both indispensable during embryogenesis. They are largely known to regulate the same genes. To identify genes preferentially regulated by p300 or CBP, we performed an extensive genome-wide survey using the ChIP-seq on cell-cycle synchronized cells. We found(More)
BACKGROUND The development of second generation sequencing methods has enabled large scale DNA variation studies at moderate cost. For the high throughput discovery of single nucleotide polymorphisms (SNPs) in species lacking a sequenced reference genome, we set-up an analysis pipeline based on a short read de novo sequence assembler and a program designed(More)