Johan L. van Leeuwen

Learn More
Muscle moment arms at the human knee and ankle were estimated from muscle length changes measured as a function of joint flexion angle in cadaver specimens. Nearly all lower-leg muscles were studied: extensor digitorum longus, extensor hallucis longus, flexor digitorum longus, flexor hallucis longus, gastrocnemius lateralis, gastrocnemius medialis, peroneus(More)
Gliding birds continually change the shape and size of their wings, presumably to exploit the profound effect of wing morphology on aerodynamic performance. That birds should adjust wing sweep to suit glide speed has been predicted qualitatively by analytical glide models, which extrapolated the wing's performance envelope from aerodynamic theory. Here we(More)
The zebrafish Danio rerio is a widely used model organism in studies of genetics, developmental biology, and recently, biomechanics. In order to quantify changes in swimming during all stages of development, we have developed a visual tracking system that estimates the posture of fish. Our current approach assumes planar motion of the fish, given image(More)
Fish larvae, like many adult fish, swim by undulating their body. However, their body size and swimming speeds put them in the intermediate flow regime, where viscous and inertial forces both play an important role in the interaction between fish and water. To study the influence of the relatively high viscous forces compared with adult fish, we mapped the(More)
A two-segment model based on Alexander (1990; Phil. Trans. R. Soc. Lond. B 329, 3-10) was used to investigate the action of knee extensor muscles during long jumps. A more realistic representation of the muscle and tendon properties than implemented previously was necessary to demonstrate the advantages of eccentric force enhancement and non-linear tendon(More)
Many plethodontid salamanders project their tongues ballistically at high speed and for relatively great distances. Capturing evasive prey relies on the tongue reaching the target in minimum time, therefore it is expected that power production, or the rate of energy release, is maximized during tongue launch. We examined the dynamics of tongue projection in(More)
In contrast to human phonation, the virtuoso vocalizations of most birds are modulated at the level of the sound generator, the syrinx. We address the hypothesis that syringeal muscles are physiologically capable of controlling the sound-generating syringeal membranes in the ring dove (Streptopelia risoria) syrinx. We establish the role of the(More)
This paper presents a planar architectural model for an activated skeletal muscle, with mechanical equilibrium throughout the muscle belly. The model can predict the shape of the muscle fibres and tendinous sheets as well as the internal pressure distribution in the central longitudinal plane (perpendicular to the tendinous sheets) of uni- and bipennate(More)
A model of a "general" sarcomere is presented for the calculation of power output as a function of (i) contraction range, (ii) contraction velocity, (iii) muscle fibre stimulation (active state) and (iv) structural parameters of the sarcomere (i.e. lengths of actin, myosin, and bare zone on myosin, and thickness of the Z-disc). The model is applicable to(More)
As they descend, the autorotating seeds of maples and some other trees generate unexpectedly high lift, but how they attain this elevated performance is unknown. To elucidate the mechanisms responsible, we measured the three-dimensional flow around dynamically scaled models of maple and hornbeam seeds. Our results indicate that these seeds attain high lift(More)