Johan H. Mentink

Learn More
The question of how, and how fast, magnetization can be reversed is a topic of great practical interest for the manipulation and storage of magnetic information. It is generally accepted that magnetization reversal should be driven by a stimulus represented by time-non-invariant vectors such as a magnetic field, spin-polarized electric current, or(More)
We propose a general theoretical framework for ultrafast laser-induced spin dynamics in multisublattice magnets. We distinguish relaxation of relativistic and exchange origin and show that when the former dominates, nonequivalent sublattices have distinct dynamics despite their strong exchange coupling. Even more interesting, in the exchange dominated(More)
Ultrafast laser techniques have revealed extraordinary spin dynamics in magnetic materials that equilibrium descriptions of magnetism cannot explain. Particularly important for future applications is understanding non-equilibrium spin dynamics following laser excitation on the nanoscale, yet the limited spatial resolution of optical laser techniques has(More)
We propose new semi-implicit numerical methods for the integration of the stochastic Landau-Lifshitz equation with built-in angular momentum conservation. The performance of the proposed integrators is tested on the 1D Heisenberg chain. For this system, our schemes show better stability properties and allow us to use considerably larger time steps than(More)
Terahertz magnetic fields with amplitudes of up to 0.4 Tesla drive magnon resonances in nickel oxide while the induced dynamics is recorded by femtosecond magneto-optical probing. We observe distinct spin-mediated optical nonlinearities, including oscillations at the second harmonic of the 1 THz magnon mode. The latter originate from coherent dynamics of(More)
In recent years, the optical control of exchange interactions has emerged as an exciting new direction in the study of the ultrafast optical control of magnetic order. Here we review recent theoretical works on antiferromagnetic systems, devoted to (i) simulating the ultrafast control of exchange interactions, (ii) modeling the strongly nonequilibrium(More)
The study of infrasound is experiencing a renaissance since it was chosen as a verification technique for the Comprehensive Nuclear-Test-Ban Treaty. Source identification is one of the main topics of research which involves detailed knowledge on the source time function, the atmosphere as medium of propagation, and the measurement system. Applications are(More)
  • 1