Learn More
We propose algorithms for learning Markov boundaries from data without having to learn a Bayesian network first. We study their correctness, scalability and data efficiency. The last two properties are important because we aim to apply the algorithms to identify the minimal set of features that is needed for probabilistic classification in databases with(More)
MOTIVATION For the last few years, Bayesian networks (BNs) have received increasing attention from the computational biology community as models of gene networks, though learning them from gene-expression data is problematic. Most gene-expression databases contain measurements for thousands of genes, but the existing algorithms for learning BNs from data do(More)
We analyze two different feature selection problems: finding a minimal feature set optimal for classification (MINIMAL-OPTIMAL) vs. finding all features relevant to the target variable (ALL-RELEVANT). The latter problem is motivated by recent applications within bioinformatics, particularly gene expression analysis. For both problems, we identify classes of(More)
After the major achievements of the DNA sequencing projects, an equally important challenge now is to uncover the functional relationships among genes (i.e. gene networks). It has become increasingly clear that computational algorithms are crucial for extracting meaningful information from the massive amount of data generated by high-throughput genome-wide(More)
We propose an algorithm for learning the Markov boundary of a random variable from data without having to learn a complete Baye-sian network. The algorithm is correct under the faithfulness assumption, scalable and data efficient. The last two properties are important because we aim to apply the algorithm to identify the minimal set of random variables that(More)
We present a sound and complete graphical criterion for reading dependencies from the minimal undirected independence map G of a graphoid M that satisfies weak transitivity. Here, complete means that it is able to read all the dependencies in M that can be derived by applying the graphoid properties and weak transitivity to the dependencies used in the(More)
We perform a systematic evaluation of feature selection (FS) methods for support vector machines (SVMs) using simulated high-dimensional data (up to 5000 dimensions). Several findings previously reported at low dimensions do not apply in high dimensions. For example, none of the FS methods investigated improved SVM accuracy, indicating that the SVM built-in(More)
Despite the well-documented effects of plasma lipid lowering regimes halting atherosclerosis lesion development and reducing morbidity and mortality of coronary artery disease and stroke, the transcriptional response in the atherosclerotic lesion mediating these beneficial effects has not yet been carefully investigated. We performed transcriptional(More)
Environmental exposures filtered through the genetic make-up of each individual alter the transcriptional repertoire in organs central to metabolic homeostasis, thereby affecting arterial lipid accumulation, inflammation, and the development of coronary artery disease (CAD). The primary aim of the Stockholm Atherosclerosis Gene Expression (STAGE) study was(More)
BACKGROUND Gene expression is governed by complex networks, and differences in expression patterns between distinct biological conditions may therefore be complex and multivariate in nature. Yet, current statistical methods for detecting differential expression merely consider the univariate difference in expression level of each gene in isolation, thus(More)