Johan A. Stenberg

Learn More
Detection and identification of pathogens in environmental samples for biosecurity applications are challenging due to the strict requirements on specificity, sensitivity and time. We have developed a concept for quick, specific and sensitive pathogen identification in environmental samples. Target identification is realized by padlock- and proximity(More)
We describe a scheme for biomolecule enumeration by converting nanometer-scale specific molecular recognition events mediated by rolling-circle amplification to fluorescent micrometer-sized DNA molecules amenable to discrete optical detection. Our amplified single-molecule detection (SMD) approach preserves the discrete nature of the molecular population,(More)
We present a method to specifically select large sets of DNA sequences for parallel amplification by PCR using target-specific oligonucleotide constructs, so-called selectors. The selectors are oligonucleotide duplexes with single-stranded target-complementary end-sequences that are linked by a general sequence motif. In the selection process, a pool of(More)
To understand the ecological and evolutionary consequences of species interactions in food webs necessitates that interactions are properly identified. Genetic analyses suggest that many supposedly generalist parasitoid species should rather be defined as multiple species with a more narrow diet, reducing the probability that such species may mediate(More)
We describe PieceMaker, a software tool for the design of applications of selector probes-oligonucleotide probes that direct circularization of target nucleic acid molecules. Such probes can be combined in parallel to circularize a selection of fragments from restriction digested total genomic DNA. These fragments can then be amplified in a single PCR using(More)
BACKGROUND Procedures for genetic analyses based on oligonucleotide probes are powerful tools that can allow highly parallel investigations of genetic material. Such procedures require the design of large sets of probes using application-specific design constraints. RESULTS ProbeMaker is a software framework for computer-assisted design and analysis of(More)
DNA microarrays serve to monitor a wide range of molecular events, but emerging applications like measurements of weakly expressed genes or of proteins and their interaction patterns will require enhanced performance to improve specificity of detection and dynamic range. To further extend the utility of DNA microarray-based approaches we present a(More)
Structural variation is an important cause of genetic variation. Whole genome analysis techniques can efficiently identify copy-number variable regions but there is a need for targeted methods, to verify and accurately size variable regions, and to diagnose large sample cohorts. We have developed a technique based on multiplex amplification of size-coded(More)
Gregarious organisms need to handle the trade-off between increasing food competition and the positive effects of group living, and this is particularly important for ovipositing females. We hypothesized that insect females consider how many conspecifics previously visited a host plant. In a no-choice assay, we show that the gregarious blue willow leaf(More)
Osteoarthritis (OA) is a destructive joint disease and there are no known biomarkers available for an early diagnosis. To identify potential disease biomarkers and gain further insight into the disease mechanisms of OA we applied quantitative proteomics with SILAC technology on the secretomes from chondrocytes of OA knees, designated as high Mankin (HM)(More)