Jofre Pedregosa-Gutierrez

  • Citations Per Year
Learn More
It is now well established that energetic electron emission, nonsequential ionization, and high harmonic generation, produced during the interaction of intense, femtosecond laser pulses with atoms (and atomic positive ions), can be explained by invoking rescattering of the active electron in the laser field, the so-called rescattering mechanism. In contrast(More)
Control over the motional degrees of freedom of atoms, ions, and molecules in a field-free environment enables unrivalled measurement accuracies but has yet to be applied to highly charged ions (HCIs), which are of particular interest to future atomic clock designs and searches for physics beyond the Standard Model. Here, we report on the Coulomb(More)
The experimental study of molecular dissociation of H2+ by intense laser pulses is complicated by the fact that the ions are initially produced in a wide range of vibrational states, each of which responds differently to the laser field. An electrostatic storage device has been used to radiatively cool HD+ ions enabling the observation of above threshold(More)
We analyse the possibility of cooling ions with a single laser beam, due to the coupling between the three components of their motion induced by the Coulomb interaction. For this purpose, we numerically study the dynamics of ion clouds of up to 140 particles, trapped in a linear quadrupole potential and cooled with a laser beam propagating in the radial(More)
Efficient transport of cold atoms or ions is a subject of increasing concern in many experimental applications reaching from quantum information processing to frequency metrology. Different transport schemes have been developed, which allow to move single atoms minimizing their energy gain. In this work, the experimental implementation of the transport of(More)
A STIRAP-like scheme is proposed to exploit a three-photon resonance taking place in alkaline-earth-metal ions. This scheme is designed for state transfer between the two fine structure components of the metastable D-state which are two excited states that can serve as optical or THz qu-bit. The advantage of a coherent three-photon process compared to(More)
The manipulation of trapped charged particles by electric fields is an accurate, robust and reliable technique for many applications or experiments in high-precision spectroscopy. The transfer of the ion sample between multiple traps allows the use of a tailored environment in quantum information, cold chemistry, or frequency metrology experiments. In this(More)
While the linear radiofrequency trap finds various applications in high-precision spectroscopy and quantum information, its higher-order cousin, the linear multipole trap, is almost exclusively employed in physical chemistry. Recently, first experiments have shown interesting features by laser-cooling multipole-trapped ion clouds. Multipole traps show a(More)
  • 1