Joerg Striessnig

Learn More
The family of voltage-gated calcium channels serves as the key transducers of cell surface membrane potential changes into local intracellular calcium transients that initiate many different physiological events. There are 10 members of the voltage-gated calcium channel family that have been characterized in mammals, and they serve distinct roles in(More)
Voltage-gated L-type Ca2+ channels (LTCCs) containing a pore-forming alpha1D subunit (D-LTCCs) are expressed in neurons and neuroendocrine cells. Their relative contribution to total L-type Ca2+ currents and their physiological role and significance as a drug target remain unknown. Therefore, we generated D-LTCC deficient mice (alpha1D-/-) that were viable(More)
In cochlea inner hair cells (IHCs), L-type Ca(2+) channels (LTCCs) formed by alpha1D subunits (D-LTCCs) possess biophysical and pharmacological properties distinct from those of alpha1C containing C-LTCCs. We investigated to which extent these differences are determined by alpha1D itself by analyzing the biophysical and pharmacological properties of cloned(More)
Migraine is a public health problem of great impact on both the patient and society. The overall migraine prevalence in western countries is 6–8% in men and 15–25% in women. It has been calculated that about 5% of the general population have at least 18 days of migraine per year, and that at least 1% — that is, more than 2.5 million people in North America(More)
Sigma-ligands comprise several chemically unrelated drugs such as haloperidol, pentazocine, and ditolylguanidine, which bind to a family of low molecular mass proteins in the endoplasmic reticulum. These so-called sigma-receptors are believed to mediate various pharmacological effects of sigma-ligands by as yet unknown mechanisms. Based on their opposite(More)
Cochlear inner hair cells (IHCs) release neurotransmitter onto afferent auditory nerve fibers in response to sound stimulation. During early development, afferent synaptic transmission is triggered by spontaneous Ca2+ spikes of IHCs, which are under efferent cholinergic control. Around the onset of hearing, large-conductance Ca2+-activated K+ channels are(More)
We studied wild-type (WT) and Cav1.3(-/-) mouse chromaffin cells (MCCs) with the aim to determine the isoform of L-type Ca(2+) channel (LTCC) and BK channels that underlie the pacemaker current controlling spontaneous firing. Most WT-MCCs (80%) were spontaneously active (1.5 Hz) and highly sensitive to nifedipine and BayK-8644(More)
The association of L-type Ca(2+) channels to the secretory granules and its functional significance to secretion was investigated in mouse pancreatic B cells. Nonstationary fluctuation analysis showed that the B cell is equipped with <500 alpha1(C) L-type Ca(2+) channels, corresponding to a Ca(2+) channel density of 0.9 channels per microm(2). Analysis of(More)
Missense mutations in the pore-forming human alpha1A subunit of neuronal P/Q-type Ca2+ channels are associated with familial hemiplegic migraine (FHM). The pathophysiological consequences of these mutations are unknown. We have introduced the four single mutations reported for the human alpha1A subunit into the conserved rabbit alpha1A (R192Q, T666M, V714A,(More)
At least 5% of individuals with hypertension have adrenal aldosterone-producing adenomas (APAs). Gain-of-function mutations in KCNJ5 and apparent loss-of-function mutations in ATP1A1 and ATP2A3 were reported to occur in APAs. We find that KCNJ5 mutations are common in APAs resembling cortisol-secreting cells of the adrenal zona fasciculata but are absent in(More)