Joerg Libuda

Learn More
Combining scanning tunneling microscopy (STM), IR reflection absorption spectroscopy (IRAS) and molecular beam (MB) techniques, we have investigated particle size effects on a Pd/Fe(3)O(4) model catalyst. We focus on the particle size dependence of (i) CO adsorption, (ii) oxygen adsorption and (iii) Pd nanoparticle oxidation/reduction. The model system,(More)
Thin films of reduced ceria supported on metals are often applied as substrates in model studies of the chemical reactivity of ceria based catalysts. Of special interest are the properties of oxygen vacancies in ceria. However, thin films of ceria prepared by established methods become increasingly disordered as the concentration of vacancies increases.(More)
Interactions of metal particles with oxide supports can radically enhance the performance of supported catalysts. At the microscopic level, the details of such metal-oxide interactions usually remain obscure. This study identifies two types of oxidative metal-oxide interaction on well-defined models of technologically important Pt-ceria catalysts: (1)(More)
We show that coverage fluctuations on catalyst particles can drastically alter their macroscopic catalytic behavior. Scrutinizing the occurrence of kinetic bistabilities, it is demonstrated by molecular beam experiments on model catalysts that macroscopically observable bistabilities vanish completely with decreasing particle size, as previously predicted(More)
Complete dehydrogenation of methane is studied on model Pt catalysts by means of state-of-the-art DFT methods and by a combination of supersonic molecular beams with high-resolution photoelectron spectroscopy. The DFT results predict that intermediate species like CH(3) and CH(2) are specially stabilized at sites located at particles edges and corners by an(More)
Heterogeneous catalysis is one of the fields of modern technology, in which a characterization of structural and chemical properties of solid surfaces at the microscopic level is of enormous importance. For a long time, such insights have been precluded by the complexity of most catalytically active materials. Recently, substantial progress has been made,(More)
Materials making use of thin ionic liquid (IL) films as support-modifying functional layer open up a variety of new possibilities in heterogeneous catalysis, which range from the tailoring of gas-surface interactions to the immobilization of molecularly defined reactive sites. The present report reviews recent progress towards an understanding of "supported(More)