Learn More
BACKGROUND Specific reversal agents for non-vitamin K antagonist oral anticoagulants are lacking. Idarucizumab, an antibody fragment, was developed to reverse the anticoagulant effects of dabigatran. METHODS We undertook this prospective cohort study to determine the safety of 5 g of intravenous idarucizumab and its capacity to reverse the anticoagulant(More)
OBJECTIVE Inflammatory mechanisms are involved in atherosclerotic plaque rupture and subsequent thrombin formation. Thrombin not only plays a central role in thrombus formation and platelet activation, but also in the induction of inflammatory processes. We assessed the hypothesis that melagatran, a direct thrombin inhibitor, attenuates plaque progression(More)
Idarucizumab, a Fab fragment directed against dabigatran, produced rapid and complete reversal of the anticoagulation effect of dabigatran in animals and in healthy volunteers. The Study of the REVERSal Effects of Idarucizumab in Patients on Active Dabigatran (RE-VERSE AD™) is a global phase 3 prospective cohort study aimed at investigating idarucizumab in(More)
BACKGROUND We studied whether lipid-lowering therapy with atorvastatin (target LDL cholesterol [LDL-C] <100 mg/dL) compared with a moderate treatment regimen that used other lipid-lowering drugs led to a lesser progression of atherosclerosis and to different changes in plaque echogenicity in patients with coronary artery disease. METHODS AND RESULTS This(More)
BACKGROUND Idarucizumab is a monoclonal antibody fragment that binds dabigatran with high affinity in a 1:1 molar ratio. We investigated the safety, tolerability, and efficacy of increasing doses of idarucizumab for the reversal of anticoagulant effects of dabigatran in a two-part phase 1 study (rising-dose assessment and dose-finding, proof-of-concept(More)
Oxygen-derived free radicals are thought to contribute to the initiation and progression of cardiovascular disease via several different mechanisms, such as consumption of nitric oxide, oxidation of proteins and lipids, and activation of redox-sensitive signalling cascades. Vascular NADPH oxidases are important sources of vascular radical formation. The(More)
beta(3)-adrenoceptors have recently been shown to induce a complex modulation of intracellular signaling pathways including cyclic guanine monophosphate, cyclic adenosine monophosphate, nitric oxide, and protein kinases A and C. They are expressed in a broad variety of tissues including the myocardium, vascular smooth muscle, and endothelium. In those(More)
Angiotensin (Ang) II promotes renal infiltration by immunocompetent cells in double-transgenic rats (dTGRs) harboring both human renin and angiotensinogen genes. To elucidate disease mechanisms, we investigated whether or not dexamethasone (DEXA) immunosuppression ameliorates renal damage. Untreated dTGRs developed hypertension, renal damage, and 50%(More)
Inflammatory response and chemotaxis of vascular wall cells play an important pathogenic role in the development of atherosclerosis. Monocyte chemoattractant protein-1 (MCP-1) is a potent chemoattractant for monocytes. Besides the induction of monocyte recruitment, it has been suggested that MCP-1 may directly activate smooth muscle cells. We investigated(More)
Monocyte chemoattractant protein-1 (MCP-1) is a potent chemokine synthesized by several cell types, e.g., inflammatory cells, such as monocytes, and resident renal cells, such as human tubular epithelial cells (TECs). Besides induction of monocyte recruitment, MCP-1 has been suggested to induce non-leukocytes to produce cytokines and adhesion molecules.(More)