Learn More
It has been proposed but never proven that cohesion between sister chromatids distal to chiasmata is responsible for holding homologous chromosomes together while spindles attempt to pull them toward opposite poles during metaphase of meiosis I. Meanwhile, the mechanism by which disjunction of homologs is triggered at the onset of anaphase I has remained a(More)
A 745 bp sequence (pSau3A9) located at the centromeres of several cereal species was isolated from a sorghum BAC library by Jiang et al. (1996, Proc. Natl Acad. Sci. USA, 93, 14210-14213). We have amplified a partially homologous 809 bp sequence from barely genomic DNA by PCR and localized it to the centromeres of barley, wheat and rye chromosomes by(More)
During interphase in the budding yeast, Saccharomyces cerevisiae, centromeres are clustered near one pole of the nucleus as a rosette with the spindle pole body at its hub. Opposite to the centromeric pole is the nucleolus. Chromosome arms extend outwards from the centromeric pole and are preferentially directed towards the opposite pole. Centromere(More)
Both DNA methylation and post-translational histone modifications contribute to gene silencing, but the mechanistic relationship between these epigenetic marks is unclear. Mutations in two Arabidopsis genes, the KRYPTONITE (KYP) histone H3 lysine 9 (H3K9) methyltransferase and the CHROMOMETHYLASE3 (CMT3) DNA methyltransferase, cause a reduction of CNG DNA(More)
The multisubunit protein complex cohesin is required to establish cohesion between sister chromatids during S phase and to maintain it during G2 and M phases. Cohesin is essential for mitosis, and even partial defects cause very high rates of chromosome loss. In budding yeast, cohesin associates with specific sites which are distributed along the entire(More)
The organization of DNA into chromatin regulates expression and maintenance (replication, repair, recombination, segregation) of genetic information in a dynamic manner. The N-terminal tails of the nucleosomal core histones are subjected to post-translational modifications such as acetylation, methylation, phosphorylation, ubiquitination, glycosylation,(More)
Differential painting of all five chromosome pairs of Arabidopsis thaliana revealed for the first time the interphase chromosome arrangement in a euploid plant. Side-by-side arrangement of heterologous chromosome territories and homologous association of chromosomes 1, 3 and 5 (on average in 35–50% of nuclei) are in accordance with the random frequency(More)
Histone H3 lysine 4 trimethylation (H3K4me3) is abundant in euchromatin and is in general associated with transcriptional activation in eukaryotes. Although some Arabidopsis thaliana SET DOMAIN GROUP (SDG) genes have been previously shown to be involved in H3K4 methylation, they are unlikely to be responsible for global genome-wide deposition of H3K4me3.(More)
The positions of 18/25S rRNA genes, 5S RNA genes and of Arabidopsis-type telomeric repeats were localized by fluorescent in situ hybridization (FISH) on the chromosomes of three coniferous species; Picea abies, Larix decidua and Pinus sylvestris, each with 2n=24 chromosomes. Computer-aided chromosome analysis was performed on the basis of the chromosome(More)
Mouse embryonic stem (ES) cells were used as an experimental model to study the effects of electromagnetic fields (EMF). ES-derived nestin-positive neural progenitor cells were exposed to extremely low frequency EMF simulating power line magnetic fields at 50 Hz (ELF-EMF) and to radiofrequency EMF simulating the Global System for Mobile Communication (GSM)(More)