Learn More
Long-term potentiation (LTP) is the most prominent model for the molecular and cellular mechanisms of learning and memory. Two main forms of LTP have been distinguished. The N-methyl-D-aspartate-receptor-dependent forms of LTP have been studied most extensively, whereas much less is known about N-methyl-D-aspartate-receptor-independent forms of LTP. This(More)
It has been suggested recently that presynaptic kainate receptors (KARs) are involved in short-term and long-term synaptic plasticity at hippocampal mossy fiber synapses. Using genetic deletion and pharmacology, we here assess the role of GLU(K5) and GLU(K6) in synaptic plasticity at hippocampal mossy fiber synapses. We found that the kainate-induced(More)
Hippocampal mossy fiber synapses show an unusual form of long-term potentiation (LTP) that is independent of NMDA receptor activation and is expressed presynaptically. Using receptor antagonists, as well as receptor knockout mice, we found that presynaptic kainate receptors facilitate the induction of mossy fiber long-term potentiation (LTP), although they(More)
cAMP is a critical second messenger involved in synaptic transmission and synaptic plasticity. Here, we show that activation of the adenylyl cyclase by forskolin and application of the cAMP-analog Sp-5,6-DCl-cBIMPS both mimicked and occluded tetanus-induced long-term potentiation (LTP) in subicular bursting neurons, but not in subicular regular firing(More)
The modulation of synaptic transmission by presynaptic ionotropic and metabotropic receptors is an important means to control and dynamically adjust synaptic strength. Even though synaptic transmission and plasticity at the hippocampal mossy fibre synapse are tightly controlled by presynaptic receptors, little is known about the downstream signalling(More)
Neurotransmission depends on the exocytic fusion of synaptic vesicles (SVs) and their subsequent reformation either by clathrin-mediated endocytosis or budding from bulk endosomes. How synapses are able to rapidly recycle SVs to maintain SV pool size, yet preserve their compositional identity, is poorly understood. We demonstrate that deletion of the(More)
The short-term dynamics of synaptic communication between neurons provides neural networks with specific frequency-filter characteristics for information transfer. The direction of short-term synaptic plasticity, that is, facilitation versus depression, is highly dependent on and inversely correlated to the basal release probability of a synapse. Amongst(More)
AMPA-type glutamate receptors mediate fast excitatory synaptic transmission in the vertebrate brain. Their surface expression at synapses between neurons is regulated in an activity-dependent and activity-independent manner. The protein machinery that regulates synaptic targeting, anchoring and turnover of AMPA receptors consists of several types of(More)
Plasticity related gene-1 (PRG-1) is a brain-specific membrane protein related to lipid phosphate phosphatases, which acts in the hippocampus specifically at the excitatory synapse terminating on glutamatergic neurons. Deletion of prg-1 in mice leads to epileptic seizures and augmentation of EPSCs, but not IPSCs. In utero electroporation of PRG-1 into(More)
The tetronic acid derivative losigamone is a new anticonvulsant drug with a mechanism of action that was previously unknown. The drug decreases the frequency of spontaneous action potentials and suppresses repetitive firing of neurons. Here we tested the hypothesis that losigamone suppresses the persistent Na+ current (I(NaP)) in hippocampal neurons of rat(More)