Learn More
Simultaneous multithreading is a technique that permits multiple independent threads to issue multiple instructions each cycle. In previous work we demonstrated the performance potential of simultaneous multithreading, based on a somewhat idealized model. In this paper we show that the throughput gains from simultaneous multithreading can be achieved(More)
Single-event upsets from particle strikes have become akey challenge in microprocessor design. Techniques todeal with these transient faults exist, but come at a cost.Designers clearly require accurate estimates of processorerror rates to make appropriate cost/reliability trade-offs.This paper describes a method for generating theseestimates.A key aspect of(More)
Practical cache replacement policies attempt to emulate optimal replacement by predicting the re-reference interval of a cache block. The commonly used LRU replacement policy always predicts a near-immediate re-reference interval on cache hits and misses. Applications that exhibit a distant re-reference interval perform badly under LRU. Such applications(More)
The commonly used LRU replacement policy is susceptible to thrashing for memory-intensive workloads that have a working set greater than the available cache size. For such applications, the majority of lines traverse from the MRU position to the LRU position without receiving any cache hits, resulting in inefficient use of cache space. Cache performance can(More)
Chip Multiprocessors (CMPs) allow different applications to concurrently execute on a single chip. When applications with differing demands for memory compete for a shared cache, the conventional LRU replacement policy can significantly degrade cache performance when the aggregate working set size is greater than the shared cache. In such cases, shared(More)
The shared last-level caches in CMPs play an important role in improving application performance and reducing off-chip memory bandwidth requirements. In order to use LLCs more efficiently, recent research has shown that changing the re-reference prediction on cache insertions and cache hits can significantly improve cache performance. A fundamental(More)
Single-ISA heterogeneous multi-core processors are typically composed of small (e.g., in-order) power-efficient cores and big (e.g., out-of-order) high-performance cores. The effectiveness of heterogeneous multi-cores depends on how well a scheduler can map workloads onto the most appropriate core type. In general, small cores can achieve good performance(More)
Radiation-induced soft errors have emerged as a key challenge in computer system design. If the industry is to continue to provide customers with the level of reliability they expect, microprocessor architects must address this challenge directly. This effort has two parts. First, architects must understand the impact of soft errors on their designs.(More)
With the dizzying pace of semiconductor technology development, CPU designers are squeezing previously unimaginable amounts of hardware onto a single chip. Over the next 15 years we can expect the number of transistors on a chip to increase by two orders of magnitude, to a billion transistors. The obvious question, then, is how to use these transistors. One(More)