Learn More
2-Arachidonoylglycerol (2-AG) and anandamide are endocannabinoids that activate the cannabinoid receptors CB1 and CB2. Endocannabinoid signaling is terminated by enzymatic hydrolysis, a process that for anandamide is mediated by fatty acid amide hydrolase (FAAH), and for 2-AG is thought to involve monoacylglycerol lipase (MAGL). FAAH inhibitors produce a(More)
Prolonged exposure to drugs of abuse, such as cannabinoids and opioids, leads to pharmacological tolerance and receptor desensitization in the nervous system. We found that a similar form of functional antagonism was produced by sustained inactivation of monoacylglycerol lipase (MAGL), the principal degradative enzyme for the endocannabinoid(More)
Δ(9)-Tetrahydrocannbinol (THC), the primary active constituent of Cannabis sativa, has long been known to reduce opioid withdrawal symptoms. Although THC produces most of its pharmacological actions through the activation of CB(1) and CB(2) cannabinoid receptors, the role these receptors play in reducing the variety of opioid withdrawal symptoms remains(More)
The abuse of opioid drugs, both illicit and prescription, is a persistent problem in the United States, accounting for >1.2 million users who require treatment each year. Current treatments rely on suppressing immediate withdrawal symptoms and replacing illicit drug use with long-acting opiate drugs. However, the mechanisms that lead to preventing opiate(More)
Drug addiction has been conceptualized as a chronically relapsing disorder of compulsive drug seeking and taking that progresses through three stages: binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation. Drug addiction impacts multiple motivational mechanisms and can be conceptualized as a disorder that progresses from positive(More)
The endogenous cannabinoid N-arachidonoyl ethanolamine (anandamide; AEA) produces most of its pharmacological effects by binding and activating CB(1) and CB(2) cannabinoid receptors within the CNS and periphery. However, the actions of AEA are short lived because of its rapid catabolism by fatty acid amide hydrolase (FAAH). Indeed, FAAH knockout mice as(More)
RATIONALE Cannabinoids have recently been identified as potential neuronal modulators of pruritic response, representing a potential target in the treatment of itch associated with a variety of pathophysiologic conditions. While the selective CB(1) receptor antagonist rimonabant is an established pruritic agent in both animal and clinical testing, its(More)
Repeated administration of Delta(9)-tetrahydrocannabinol (THC), the primary psychoactive constituent of Cannabis sativa, induces profound tolerance that correlates with desensitization and downregulation of CB(1) cannabinoid receptors in the CNS. However, the consequences of repeated administration of the endocannabinoid N-arachidonoyl ethanolamine(More)
Dopaminergic neurons in the ventral tegmental area (VTA) are well known for mediating the positive reinforcing effects of drugs of abuse. Here we identify in rodents and humans a population of VTA dopaminergic neurons expressing corticotropin-releasing factor (CRF). We provide further evidence in rodents that chronic nicotine exposure upregulates Crh mRNA(More)
Buprenorphine, a synthetic opioid that acts at both μ and κ opioid receptors, can decrease cocaine use in individuals with opioid addiction. However, the potent agonist action of buprenorphine at μ opioid receptors raises its potential for creating opioid dependence in non-opioid-dependent cocaine abusers. Here, we tested the hypothesis that a combination(More)