Joel D Pardee

Learn More
The ways in which the various microtubule-associated proteins (MAPs) contribute to cellular function are unknown beyond the ability of these proteins to modify microtubule dynamics. One member of the MAP family, tau protein, is restricted in its distribution to the axonal compartment of neurons, and has therefore prompted studies that attempt to relate tau(More)
The Ca2+-sensitive actin-binding protein isolated from Dictyostelium discoideum, 30,000-D protein (Fechheimer and Taylor: J. Biol. Chem. 259:4514-4520, 1984;) has recently been localized in filipodia of substrate-adhered amoebae (Fechheimer: J. Cell Biol. 104:1539-1551, 1987). We have determined that this protein has a Mr of 34,000 daltons and is strictly(More)
PURPOSE Multiple subtypes of renal cancer have been identified. Clear-cell renal cell carcinoma (RCC) is the most common subtype of RCC and one of the more aggressive. The goal of this study was to investigate in RCC the levels of Na,K-ATPase, an abundant enzyme in the kidney which is crucial for various kidney functions. Na,K-ATPase is a heterodimer(More)
The assembly of highly purified actin from Dictyostelium discoideum amoebae and rabbit skeletal muscle by physiological concentrations of KCI proceeds through successive stages of (a) rapid formation of a distinct monomeric species referred to as KCI-monomer, (b) incorporation of KCI-monomers into an ATP-containing filament, and (c) ATP hydrolysis that(More)
Regulated assembly of myosin II in Dictyostelium discoideum amoebae partially controls the orderly formation of contractile structures during cytokinesis and cell migration. Kinetic and structural analyses show that Dictyostelium myosin II assembles by a sequential process of slow nucleation and controlled growth that differs in rate and mechanism from(More)
Severin, a 40,000-dalton protein from Dictyostelium that disassembles actin filaments in a Ca2+ -dependent manner, was purified 500-fold to greater than 99% homogeneity by modifications of the procedure reported by Brown, Yamamoto, and Spudich (1982. J. Cell Biol. 93:205-210). Severin has a Stokes radius of 29 A and consists of a single polypeptide chain.(More)
To identify regulatory mechanisms potentially involved in formation of actomyosin structures in smooth muscle cells, the influence of F-actin on smooth muscle myosin assembly was examined. In physiologically relevant buffers, AMPPNP binding to myosin caused transition to the soluble 10S myosin conformation due to trapping of nucleotide at the active sites.(More)
Severin is a 40-kDa Ca2+-activated protein from Dictyostelium that rapidly fragments and disassembles actin filaments in vitro (S.S. Brown, K. Yamamoto, and J.A. Spudich, J. Cell Biol. 93, 205-210, 1982; and K. Yamamoto, J.D. Pardee, J. Reidler, L. Stryer, and J.A. Spudich. J. Cell Biol. 95, 711-719, 1982). To determine if severin is colocalized with actin(More)
Ischemia causes AKI as a result of ATP depletion, and rapid recovery of ATP on reperfusion is important to minimize tissue damage. ATP recovery is often delayed, however, because ischemia destroys the mitochondrial cristae membranes required for mitochondrial ATP synthesis. The mitochondria-targeted compound SS-31 accelerates ATP recovery after ischemia and(More)