Learn More
Protein quality control (PQC) degradation systems protect the cell from the toxic accumulation of misfolded proteins. Because any protein can become misfolded, these systems must be able to distinguish abnormal proteins from normal ones, yet be capable of recognizing the wide variety of distinctly shaped misfolded proteins they are likely to encounter. How(More)
Small heat shock proteins (sHSPs) make up a class of molecular chaperones broadly observed across organisms. Many sHSPs form large oligomers that undergo dynamic subunit exchange that is thought to play a role in chaperone function. Though remarkably heterogeneous, sHSP oligomers share three types of intermolecular interactions that involve all three(More)
Protein quality control (PQC) degradation protects the cell by preventing the toxic accumulation of misfolded proteins. In eukaryotes, PQC degradation is primarily achieved by ubiquitin ligases that attach ubiquitin to misfolded proteins for proteasome degradation. To function effectively, PQC ubiquitin ligases must distinguish misfolded proteins from their(More)
The hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels are pacemaker channels whose currents contribute to rhythmic activity in the heart and brain. HCN channels open in response to hyperpolarizing voltages, and the binding of cAMP to their cyclic nucleotide-binding domain (CNBD) facilitates channel opening. Here, we report that, like(More)
Hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels underlie the cationic Ih current present in many neurons. The direct binding of cyclic AMP to HCN channels increases the rate and extent of channel opening and results in a depolarizing shift in the voltage dependence of activation. TRIP8b is an accessory protein that regulates the cell(More)
Cells use protein quality control (PQC) systems to protect themselves from potentially harmful misfolded proteins. Many misfolded proteins are repaired by molecular chaperones, but irreparably damaged proteins must be destroyed. Eukaryotes predominantly destroy these abnormally folded proteins through the ubiquitin-proteasome pathway, which requires(More)
  • 1