Joel Bertinshaw

Learn More
We report on neutron diffraction, thermal expansion, magnetostriction, dielectric, and specific heat measurements on polycrystalline FeCr2S4 in external magnetic fields. The ferrimagnetic ordering temperatures TC ≈ 170 K and the transition at TOO ≈ 10 K, which has been associated with orbital ordering, are only weakly shifted in magnetic fields up to 9 T.(More)
Annealing tin doped indium oxide (ITO) thin films by self-heating shows potential for reducing the crystallization temperature required to optimize the optical and electrical properties of the films. It also shows promise as a cost effective method of studying the heat treatment process in situ. A computer based solution was developed to allow for a precise(More)
Magnonic devices that utilize electric control of spin waves mediated by complex spin textures are an emerging direction in spintronics research. Room-temperature multiferroic materials, such as bismuth ferrite (BiFeO3), would be ideal candidates for this purpose. To realize magnonic devices, a robust long-range spin cycloid with well-known direction is(More)
High magnetizations are desirable for spintronic devices that operate by manipulating electronic states using built-in magnetic fields. However, the magnetic moment in promising dilute magnetic oxide nanocomposites is very low, typically corresponding to only fractions of a Bohr magneton for each dopant atom. In this study, we report a large magnetization(More)
  • 1